
OVM Class Reference
Version 2.0
September 2008

© 2008 Cadence Design Systems, Inc. (Cadence). All rights reserved.
Cadence Design Systems, Inc., 2655 Seely Ave., San Jose, CA 95134, USA.

© 2008 Mentor Graphics, Inc. (Mentor). All rights reserved.
Mentor Graphics, Inc., 8005 SW Boeckman Rd., Wilsonville, OR 97070, USA

This product is licensed under the Apache Software Foundation’s Apache License, Version 2.0, January
2004. The full license is available at: http://www.apache.org/licenses/

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. and Mentor Graphics, Inc.
contained in this document are attributed to Cadence and Mentor with the appropriate symbol. For queries
regarding Cadence’s or Mentor’s trademarks, contact the corporate legal department at the address shown
above. All other trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law. Cadence and Mentor grant
permission to print hard copy of this publication subject to the following conditions:

1. The publication may not be modified in any way.
2. Any authorized copy of the publication or portion thereof must include all original copyright,

trademark, and other proprietary notices and this permission statement.

Disclaimer: Information in this publication is provided as is and subject to change without notice and does
not represent a commitment on the part of Cadence or Mentor. Cadence and Mentor do not make, and
expressly disclaim, any representations or warranties as to the completeness, accuracy, or usefulness of
the information contained in this document. Cadence and Mentor do not warrant that use of such information
will not infringe any third party rights, nor does Cadence or Mentor assume any liability for damages or costs
of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

3

OVM Class Definitions . 7
Class Index . 7

Base . 12
ovm_void . 12
ovm_object . 13
ovm_transaction . 27

Component Hierarchy . 34
ovm_component . 34
ovm_phase . 59
ovm_root . 65

Reporting . 69
ovm_report_object . 70
ovm_reporter . 78
ovm_report_handler . 79
ovm_report_server . 84

Factory . 88
ovm_object_wrapper . 88
ovm_component_registry #(T,Tname) . 90
ovm_object_registry #(T,Tname) . 94
ovm_factory . 97

Synchronization . 109
ovm_event . 109
ovm_event_pool . 114
ovm_event_callback . 117
ovm_barrier . 119
ovm_barrier_pool . 122

Policies . 125
ovm_comparer . 125
ovm_packer . 130
ovm_recorder . 136
ovm_printer . 139

Policy Knobs . 147

Contents

4

ovm_printer_knobs . 147
Printer Examples . 152

TLM Interfaces . 154
tlm_if_base #(T1,T2) . 155
Port and Export Connectors . 158
Uni-Directional Interfaces . 160
Bi-Directional Interfaces . 161

Ports and Exports . 162
ovm_port_base #(IF) . 162
ovm_uni-if_port #(T) . 167
ovm_bi-if_port #(REQ,RSP) . 168
ovm_uni-if_export #(T) . 169
ovm_bi-if_export #(REQ,RSP) . 170
ovm_uni-if_imp #(T,IMP) . 171
ovm_bi-if_imp #(REQ,RSP,IMP) . 172
sqr_if_base #(REQ,RSP) . 174
ovm_seq_item_pull_port_type #(REQ,RSP) . 178

Built-In TLM Channels . 180
tlm_fifo #(T) . 181
tlm_analysis_fifo #(T) . 184
tlm_req_rsp_channel #(REQ,RSP) . 186
tlm_transport_channel #(REQ,RSP) . 190

Components . 192
ovm_test . 193
ovm_env . 195
ovm_agent . 197
ovm_monitor . 198
ovm_scoreboard . 199
ovm_driver #(REQ,RSP) . 200
ovm_push_driver #(REQ,RSP) . 202
ovm_sequencer_base . 204
ovm_sequencer_param_base #(REQ,RSP) . 211
ovm_sequencer #(REQ,RSP) . 215
ovm_push_sequencer #(REQ,RSP) . 217
ovm_subscriber #(T) . 219
ovm_random_stimulus #(T) . 221

5

Sequences . 223
ovm_sequence_item . 223
ovm_sequence_base . 227
ovm_sequence #(REQ,RSP) . 236
ovm_random_sequence . 240
ovm_exhaustive_sequence . 242
ovm_simple_sequence . 244

Comparators . 246
ovm_in_order_comparator #(T,comp,convert,pair_type) . 247
ovm_in_order_built_in_comparator #(T) . 250
ovm_in_order_class_comparator #(T) . 251
ovm_algorithmic_comparator #(BEFORE,AFTER,TRANSFORMER) 252

OVM Macros . 255
Utility Macros . 255
Sequence Macros . 258
Sequence Action Macros . 259
Sequencer Macros . 262
Field Macros . 263
Array Printing Macros . 267

Transactions . 270
ovm_built_in_clone #(T) . 270
ovm_built_in_comp #(T) . 271
ovm_built_in_converter #(T) . 272
ovm_built_in_pair #(T1,T2) . 273
ovm_class_clone #(T) . 275
ovm_class_comp #(T) . 276
ovm_class_converter #(T) . 277
ovm_class_pair #(T1,T2) . 278

Global Functions and Variables . 281
Printing . 283
Reporting . 284

Index. 287

6

7

OVM Class Definitions

The OVM Reference documents all public classes in the OVM library.

The following class index provides an alphabetized list of each OVM class and the page
number to its description. Each description includes an inheritance diagram, a short overview,
a method summary, and detailed method descriptions.

Class Index

Table 1-1 Class Index

ovm_agent on page 197

ovm_algorithmic_comparator #(BEFORE,AFTER,TRANSFORMER) on page 252

ovm_barrier on page 119

ovm_barrier_pool on page 122

ovm_bi-if_export #(REQ,RSP) on page 170

ovm_bi-if_imp #(REQ,RSP,IMP) on page 172

ovm_bi-if_port #(REQ,RSP) on page 168

ovm_built_in_clone #(T) on page 270

ovm_built_in_comp #(T) on page 271

ovm_built_in_converter #(T) on page 272

ovm_built_in_pair #(T1,T2) on page 273

ovm_class_clone #(T) on page 275

ovm_class_comp #(T) on page 276

ovm_class_converter #(T) on page 277

ovm_class_pair #(T1,T2) on page 278

ovm_comparer on page 125

ovm_component on page 34

ovm_component_registry #(T,Tname) on page 90

ovm_default_line_printer on page 141

ovm_default_printer on page 142

8

ovm_default_table_printer on page 142

ovm_default_tree_printer on page 141

ovm_driver #(REQ,RSP) on page 200

ovm_env on page 195

ovm_event on page 109

ovm_event_callback on page 117

ovm_event_pool on page 114

ovm_exhaustive_sequence on page 242

ovm_factory on page 97

ovm_hier_printer_knobs on page 151

ovm_in_order_built_in_comparator #(T) on page 250

ovm_in_order_class_comparator #(T) on page 251

ovm_in_order_comparator #(T,comp,convert,pair_type) on page 247

ovm_monitor on page 198

ovm_object on page 13

ovm_object_registry #(T,Tname) on page 94

ovm_object_wrapper on page 88

ovm_packer on page 130

ovm_phase on page 59

ovm_port_base #(IF) on page 162

ovm_printer on page 139

ovm_printer_knobs on page 147

ovm_push_driver #(REQ,RSP) on page 202

ovm_push_sequencer #(REQ,RSP) on page 217

ovm_random_sequence on page 240

ovm_random_stimulus #(T) on page 221

ovm_recorder on page 136

ovm_report_handler on page 79

ovm_report_object on page 70

9

ovm_report_server on page 84

ovm_reporter on page 78

ovm_root on page 65

ovm_scoreboard on page 199

ovm_seq_item_pull_port_type #(REQ,RSP) on page 178

ovm_sequence #(REQ,RSP) on page 236

ovm_sequence_item on page 223

ovm_sequencer #(REQ,RSP) on page 215

ovm_sequencer_base on page 204

ovm_sequencer_param_base #(REQ,RSP) on page 211

ovm_simple_sequence on page 244

ovm_subscriber #(T) on page 219

ovm_random_stimulus #(T) on page 221

ovm_table_printer_knobs on page 151

ovm_test on page 193

ovm_transaction on page 27

ovm_tree_printer_knobs on page 152

ovm_uni-if_export #(T) on page 169

ovm_uni-if_imp #(T,IMP) on page 171

ovm_uni-if_port #(T) on page 167

ovm_void on page 12

sqr_if_base #(REQ,RSP) on page 174

tlm_analysis_fifo #(T) on page 184

tlm_fifo #(T) on page 181

tlm_if_base #(T1,T2) on page 155

tlm_req_rsp_channel #(REQ,RSP) on page 186

tlm_transport_channel #(REQ,RSP) on page 190

Macros

`ovm_component_utils on page 257

10

`ovm_component_utils_begin on page 257

`ovm_create on page 260

`ovm_create_on on page 261

`ovm_do on page 259

`ovm_do_on on page 261

`ovm_do_on_pri on page 262

`ovm_do_on_pri_with on page 262

`ovm_do_pri on page 260

`ovm_do_pri_with on page 260

`ovm_do_with on page 260

`ovm_field_aa_int_<key_type> on page 267

`ovm_field_aa_int_string on page 266

`ovm_field_aa_object_int on page 267

`ovm_field_aa_object_string on page 267

`ovm_field_aa_string_int on page 267

`ovm_field_aa_string_string on page 267

`ovm_field_array_int on page 266

`ovm_field_array_object on page 266

`ovm_field_array_string on page 266

`ovm_field_enum on page 265

`ovm_field_int on page 265

`ovm_field_object on page 265

`ovm_field_queue_int on page 266

`ovm_field_queue_object on page 266

`ovm_field_queue_string on page 266

`ovm_field_string on page 265

`ovm_field_utils_begin on page 258

`ovm_object_utils on page 256

`ovm_object_utils_begin on page 256

11

`ovm_phase_func_bottomup_decl on page 64

`ovm_phase_func_topdown_decl on page 64

`ovm_phase_task_bottomup_decl on page 64

`ovm_phase_task_topdown_decl on page 64

`ovm_print_aa_int_key4 on page 268

`ovm_print_aa_int_object2 on page 268

`ovm_print_aa_string_int3 on page 268

`ovm_print_aa_string_object2 on page 268

`ovm_print_aa_string_string2 on page 269

`ovm_print_object_qda3 on page 269

`ovm_print_qda_int4 on page 269

`ovm_print_string_qda3 on page 269

`ovm_rand_send on page 261

`ovm_rand_send_pri on page 261

`ovm_rand_send_pri_with on page 261

`ovm_rand_send_with on page 261

`ovm_register_sequence on page 258

`ovm_send on page 260

`ovm_send_pri on page 260

`ovm_sequence_utils on page 259

`ovm_sequencer_utils on page 262

`ovm_update_sequence_lib on page 263

`ovm_update_sequence_lib_and_item on page 263

`ovm_send on page 260

12

Base

ovm_void

The ovm_void class is the base class for all OVM classes.

The ovm_void class is an abstract class with no data members or functions. It allows for
generic containers of objects to be created, similar to a void pointer in the C programming
language. User classes derived directly from ovm_void inherit none of the OVM functionality,
but such classes may be placed in containers with ovm type objects.

Summary
virtual class ovm_void;
endclass

File

base/ovm_misc.svh

Virtual

Yes

Members

None

Methods

None

ovm_object

13

ovm_object

The ovm_object class is the base class for all OVM data and hierarchical classes. Its
primary role is to define a set of methods for such common operations as create, copy,
compare, print, and record. Classes deriving from ovm_object must implement the pure
virtual methods such as create and get_type_name. Additionally, it is strongly
recommended that derived classes override the virtual methods prefixed with do_.

Summary
virtual class ovm_object extends ovm_void;

function new (string name="");

pure virtual function string get_type_name ();

function string get_name ();

virtual function string get_full_name ();

virtual function void set_name (string name);

virtual function int get_inst_id ();

static function int get_inst_count();

static function ovm_object_wrapper get_type ();

pure virtual function ovm_object create (string name="");

virtual function ovm_object clone ();

function void copy (ovm_object rhs);

function bit compare (ovm_object rhs, ovm_comparer comparer=null);

function void record (ovm_recorder recorder=null);

function int pack (ref bit bitstream[], input ovm_packer packer=null);

function int unpack (ref bit bitstream[], input ovm_packer packer=null);

function int pack_bytes (ref byte bitstream[], input ovm_packer packer=null);

function int unpack_bytes (ref byte bitstream[],input ovm_packerpacker=null);

function int pack_ints (ref int intstream[], input ovm_packer packer=null);

function int unpack_ints (ref int intstream[],input ovm_packer packer=null);

function void print (ovm_printer printer=null);

function string sprint (ovm_printer printer=null);

virtual function void do_print (ovm_printer printer);

ovm_void

ovm_object

14

virtual function void do_record (ovm_recorder recorder);

virtual function void do_copy (ovm_object rhs);

virtual function bit do_compare (ovm_object rhs, ovm_comparer comparer);

virtual function void do_pack (ovm_packer packer);

virtual function void do_unpack (ovm_packer packer);

virtual function void set_int_local (string field_name,

ovm_bitstream_t value);

virtual function void set_object_local (string field_name,

ovm_object value, bit clone=1);

virtual function void set_string_local (string field_name,

string value);

static bit use_ovm_seeding = 1;

function void reseed ();

endclass

File

base/ovm_object.svh

Virtual

Yes

Members
static bit use_ovm_seeding = 1;

This bit enables or disables the OVM seeding mechanism. It globally affects the
operation of the reseed method.

When enabled, OVM-based objects are seeded based on their type and full hierarchical
name rather than allocation order. This improves random stability for objects whose
instance names are unique across each type. The ovm_component class is an example
of a type that has a unique instance name.

15

Methods

new
function new (string name="")

The name is the instance name of the object. If not supplied, the object is unnamed.

clone
virtual function ovm_object clone ()

The clone method creates and returns an exact copy of this object.

The default implementation calls create() followed by copy(). As clone is virtual,
derived classes may override this implementation if desired.

compare
function bit compare (ovm_object rhs,

ovm_comparer comparer=null)

The compare method deep compares this data object with the object provided in the
rhs (right-hand side) argument.

The compare method is not virtual and should not be overloaded in derived classes. To
compare the fields of a derived class, that class should override the do_compare
method. See do_compare on page 16 for more details.

The optional comparer argument specifies the comparison policy. It allows you to
control some aspects of the comparison operation. It also stores the results of the
comparison, such as field-by-field miscompare information and the total number of
miscompares. If a compare policy is not provided, then the global
ovm_default_comparer policy is used. See ovm_comparer on page 125 for more
information.

copy
function ovm_object copy (ovm_object rhs)

The copy method returns a deep copy of this object.

The copy method is not virtual and should not be overloaded in derived classes. To copy
the fields of a derived class, that class should override the do_copy method. See
do_copy on page 17 for more details.

16

create
pure virtual function ovm_object create (string name="")

The create method allocates a new object of the same type as this object and returns
it via a base ovm_object handle. Every class deriving from ovm_object, directly or
indirectly, must implement the create method.

A typical implementation is as follows:

class mytype extends ovm_object;

 ...

 virtual function ovm_object create(string name="");

mytype t = new(name);

return t;

endfunction

do_compare
virtual function void do_compare (ovm_object rhs,

ovm_comparer comparer)

The do_compare method is user-definable hook called by the compare method on
page 15. A derived class should override this method to include its fields in a compare
operation.

A typical implementation is as follows:

class mytype extends ovm_object;

 ...

 int f1;

 virtual function bit do_compare (ovm_object rhs, ovm_comparer comparer);

mytype rhs_;

do_compare = super.do_compare(rhs,comparer);

$cast(rhs_,rhs);

do_compare &= comparer.compare_field_int(“f1", f1, rhs_.f1);

endfunction

A derived class implementation must call super.do_compare to ensure its base class’
properties, if any, are included in the comparison. Also, the rhs argument is provided as
a generic ovm_object. Thus, you must $cast it to the type of this object before
comparing.

The actual comparison should be implemented using the ovm_comparer object rather
than direct field-by-field comparison. This enables users of your class to customize how
comparisons are performed and how much miscompare information is collected. See
ovm_comparer on page 125 for more details.

17

do_copy
virtual function void do_copy (ovm_object rhs)

The do_copy method is the user-definable hook called by the copy method on page 15.
A derived class should override this method to include its fields in a copy operation.

A typical implementation is as follows:

class mytype extends ovm_object;

...

int f1;

function void do_copy (ovm_object rhs);

mytype rhs_;

super.do_copy(rhs);

$cast(rhs_,rhs);

field_1 = rhs_.field_1;

endfunction

The implementation must call super.do_copy, and it must $cast the rhs argument
to the derived type before copying.

do_pack
virtual function void do_pack (ovm_packer packer)

The do_pack method is the user-definable hook called by the pack method on page 22.
A derived class should override this method to include its fields in a pack operation.

The packer argument is the policy object for packing. The policy object should be used
to pack objects.

A typical example of an object packing itself is as follows:

class mysubtype extends mysupertype;
...

shortint myshort;

obj_type myobj;

byte myarray[];

...

function void do_pack (ovm_packer packer);

 super.do_pack(packer); // pack mysupertype properties

packer.pack_field_int(myarray.size(), 32);

foreach (myarray)

packer.pack_field_int(myarray[index], 8);

packer.pack_field_int(myshort, $bits(myshort));

packer.pack_object(myobj);

18

endfunction

The implementation must call super.do_pack so that base class properties are
packed as well.

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure when unpacking, you
must include meta-information about the dynamic data when packing.

❑ For queues, dynamic arrays, or associative arrays, pack the number of elements in
the array in the 32 bits immediately before packing individual elements, as shown
above.

❑ For string data types, append a zero byte after packing the string contents.

❑ For objects, pack 4 bits immediately before packing the object. For null objects, pack
4’b0000. For non-null objects, pack 4’b0001.

Packing order does not need to match declaration order. However, unpacking order must
match packing order.

do_print
virtual function void do_print (ovm_printer printer)

The do_print method is the user-definable hook called by the print method on
page 22. A derived class should override this method to include its fields in a print
operation.

The printer argument is the policy object that governs the format and content of the
output. A do_print method implementation should not call $display directly. It should
merely call the appropriate printer methods for each of its fields. See ovm_printer on
page 139 for more information.

A typical implementation is as follows:

class mytype extends ovm_object;

data_obj data;

 int f1;

function void do_print (ovm_printer printer);

super.do_print(printer);

printer.print_field("f1", f1, $bits(f1), OVM_DEC);

printer.print_object("data", data);

endfunction

19

do_record
virtual function void do_record (ovm_recorder recorder)

The do_record method is the user-definable hook called by the record method on
page 23. A derived class should override this method to include its fields in a record
operation.

The recorder argument is policy object for recording this object. A do_record
implementation should call the appropriate recorder methods for each of its fields.
Vendor-specific recording implementations are encapsulated in the recorder policy,
thereby insulating user-code from vendor-specific behavior. See ovm_recorder on
page 136 for information.

A typical implementation is as follows:

class mytype extends ovm_object;

data_obj data;

 int f1;

function void do_record (ovm_recorder recorder);

recorder.record_field_int("f1", f1, $bits(f1), OVM_DEC);

recorder.record_object("data", data);

endfunction

do_unpack
virtual function void do_pack (ovm_packer packer)

The do_unpack method is the user-definable hook called by the unpack method on
page 25. A derived class should override this method to include its fields in an unpack
operation.

The packer argument is the policy object for both packing and unpacking. The
do_unpack implementation must use the same packer policy, and it must unpack fields
in the same order in which they were packed. See ovm_packer on page 130 for more
information.

The following implementation corresponds to the example given in do_pack on page 17:

function void do_unpack (ovm_packer packer);

int sz;

 super.do_unpack(packer); // unpack super’s properties

sz = packer.unpack_field_int(myarray.size(), 32);

 myarray.delete();

for(int index=0; index<sz; index++)

myarray[index] = packer.unpack_field_int(8);

myshort = packer.unpack_field_int($bits(myshort));

20

packer.unpack_object(myobj);

endfunction

If your object contains dynamic data (object, string, queue, dynamic array, or associative
array), and you intend to unpack into an equivalent data structure when unpacking, you
must have included meta-information about the dynamic data when it was packed.

❑ For queues, dynamic arrays, or associative arrays, unpack the number of elements
in the array from the 32 bits immediately before unpacking individual elements, as
shown above.

❑ For string data types, unpack into the new string until a null byte is encountered.

❑ For objects, unpack 4 bits into a byte or int variable. If the value is 0, the target object
should be set to null and unpacking continues to the next property, if any. If the least
significant bit is 1, then the target object should be allocated and its properties
unpacked.

get_name
function string get_name ()

Returns the name of the object, as provided by the name argument in the new function,
or as set by way of the set_name method.

get_full_name
virtual function string get_full_name ()

Returns the full hierarchical name of this object. The default implementation
concatenates the hierarchical name of the parent, if any, with the short name of this
object, as given by get_name.

It may be desirable to override the default implementation. For example, some data
elements have an anchor in the OVM hierarchy, and for these types of elements it is
useful to provide the hierarchical context as part of the name. An example of this is the
ovm_sequence #(REQ,RSP) type.

get_inst_count
static function int get_inst_count()

Returns the current value of the instance counter, which represents the total number of
ovm_object-based objects that have been allocated in simulation. The instance
counter is used to form a unique numeric instance identifier.

21

get_inst_id
virtual function int get_inst_id ()

Returns the object’s unique, numeric instance identifier.

get_type
static function ovm_object_wrapper get_type ()

Returns the type-proxy (wrapper) for this object. The ovm_factory’s type-based
override and creation methods take arguments of ovm_object_wrapper. This method,
if implemented, can be used as convenient means of supplying those arguments.

The default implementation of this method produces an error and returns null. To
enable use of this method, a user’s subtype must implement a version that returns the
subtype’s wrapper.

For example:

class cmd extends ovm_object;

 typedef ovm_object_registry #(cmd) type_id;

 static function type_id get_type();

 return type_id::get();

 endfunction

endclass

Then, to use:

factory.set_type_override(cmd::get_type(),subcmd::get_type());

This function is implemented for classes that employ the These macros do NOT perform
factory registration, implement get_type_name, nor implement the create method. Use
this form when you need custom implementations of these two methods, or when you
are setting up field macros for an abstract class (i.e. virtual class). on page 258.

get_type_name
pure virtual function string get_type_name()

This function returns the type name of the object, which is typically the type identifier
enclosed in quotes. It is used for various debugging functions in the library, and it is used
by the factory for creating objects.

This function must be defined in every derived class.

A typical implementation is as follows:

class mytype extends ovm_object;

...

22

virtual function string get_type_name();

return "mytype";

endfunction

pack

pack_bytes

pack_ints
function int pack (ref bit bitstream[], ovm_packer packer=null)

function int pack_bytes (ref byte bytestream[], ovm_packer packer=null)

function int pack_ints (ref byte intstream[], ovm_packer packer=null)

The pack methods bitwise-concatenate this object’s properties into an array of bits,
bytes, or ints. The methods are not virtual and must not be overloaded. To include
additional fields in the pack operation, derived classes should override the do_pack
method on page 17.

The optional packer argument specifies the packing policy, which governs the packing
operation. If a packer policy is not provided, the global ovm_default_packer policy
is used. See ovm_packer on page 130 for more information.

The return value is the number of bits, bytes, or ints placed into the supplied array. The
contents of the array are overwritten. Thus, the total size of the array after the operation
is its initial size plus the return value.

print
function void print (ovm_printer printer=null)

The print method deep-prints this object’s properties according to an optional
printer policy. The method is not virtual and must not be overloaded. To include
additional fields in the print operation, derived classes should override the do_print
method on page 18.

The optional printer argument specifies the printer policy, which governs the format
and content of the output. If a printer policy is not provided explicitly, then the global
ovm_default_printer policy is used. See ovm_printer on page 139 for more
information.

Note: The OVM library provides four predefined printers: ovm_printer,
ovm_line_printer, ovm_tree_printer, and the ovm_table_printer. The
default printer is the table printer.

23

record
function void record (ovm_recorder recorder=null)

The record method deep-records this object’s properties according to an optional
recorder policy. The method is not virtual and must not be overloaded. To include
additional fields in the record operation, derived classes should override the do_record
method on page 19.

The optional recorder argument specifies the recording policy, which governs how
recording takes place. If a recorder policy is not provided explicitly, then the global
ovm_default_recorder policy is used. See ovm_recorder on page 136 for
information.

Note: A simulator’s recording mechanism is vendor-specific. By providing access via a
common interface, the ovm_recorder policy provides vendor-independent access to a
simulator’s recording capabilities.

reseed
function void reseed ()

Calls srandom on the object to reseed the object using the OVM seeding mechanism to
set the seed based on type name and instance name instead of based on instance
position in a thread.

If the use_ovm_seeding static variable is set to 0, then reseed() does not perform
any function.

set_int_local

set_string_local

set_object_local
virtual function void set_int_local (string field_name,

ovm_bitstream_t value)

virtual function void set_string_local (string field_name,

string value)

virtual function void set_object_local (string field_name,

ovm_object value,

bit clone=1)

These methods provide write access to integral, string, and ovm_object-based
properties indexed by a field_name string. The object designer choose which, if any,
properties will be accessible, and overrides the appropriate methods depending on the

24

properties’ types. For objects, the optional clone argument specifies whether to clone
the value argument before assignment.

An example implementation of all three methods is as follows. The global
ovm_is_match function is used so that the field_name may contain wildcards.

class mytype extends ovm_object;

local int myint;

local byte mybyte;

local shortint myshort; // no access

local string mystring;

local obj_type myobj;

// provide access to integral properties

function void set_int_local(string field_name, ovm_bitstream_t value);

if (ovm_is_match (field_name, "myint"))

myint = value;

else if (ovm_is_match (field_name, "mybyte"))

mybyte = value;

endfunction

// provide access to string properties

function void set_string_local(string field_name, string value);

if (ovm_is_match (field_name, "mystring"))

mystring = value;

endfunction

// provide access to sub-objects

function void set_object_local(string field_name, ovm_object value,

bit clone=1);

if (ovm_is_match (field_name, "myobj")) begin

if (value != null) begin

 obj_type tmp;

// if provided value is not correct type, produce error

if (!$cast(tmp, value)

/* error */

else

myobj = clone ? tmp.clone() : tmp;

end

else

myobj = null; // value is null, so simply assign null to myobj

end

25

endfunction

...

Note: Although the object designer implements these methods to provide outside
access to one or more properties, they are intended for internal use (e.g., for
command-line debugging and auto-configuration) and should not be called directly by
the user.

set_name
virtual function void set_name (string name)

Sets the instance name of this object; overwriting any previously given name.

sprint
function string sprint (ovm_printer printer=null)

The sprint method deep-prints this object’s properties just like the print method on
page 22, except the output is to the return string. The method is not virtual and must not
be overloaded. To include additional fields in the print operation, derived classes should
override the do_print method on page 18.

The optional printer argument specifies the printer policy, which governs the format
and content of the output. If a printer policy is not provided explicitly, the global
default_printer policy is used. See ovm_printer on page 139 for details.

Note: The OVM library provides four predefined printers: ovm_printer,
ovm_line_printer, ovm_tree_printer, and the ovm_table_printer. The
default printer is the table printer.

unpack

unpack_bytes

unpack_ints
function int unpack (ref bit bitstream[], ovm_packer packer=null)

function int unpack_bytes (ref byte bytestream[],ovm_packer packer=null)

function int unpack_ints (ref byte intstream[], ovm_packer packer=null)

The unpack methods extract property values from an array of bits, bytes, or ints. The
method of unpacking must exactly correspond to the method of packing. This is assured
if (a) the same packer policy is used to pack and unpack, and (b) the order of unpacking
is the same as the order of packing used to create the input array.

26

The unpack methods are fixed (non-virtual) entry points that are called directly by the
user. To include additional fields in the unpack operation, derived classes should override
the do_unpack method on page 19.

The optional packer argument specifies the packing policy, which governs both the pack
and unpack operation. If a packer policy is not provided, then the global
default_packer policy is used. See ovm_packer on page 130 for more information.

The return value is the number of bits, bytes, or ints extracted from the supplied array.

27

ovm_transaction

The ovm_transaction class is the root base class for OVM transactions. Inheriting all the
methods of ovm_object, ovm_transaction adds a timing and recording interface.

Summary
virtual class ovm_transaction extends ovm_object;

function new (string name="");

 virtual function string convert2string();

 function void set_initiator (ovm_component initiator);

 function ovm_component get_initiator ();

 // Transaction recording interface

 function void accept_tr (time accept_time=0);

 function integer begin_tr (time begin_time=0);

 function integer begin_child_tr (time begin_time=0, integer parent_handle=0);

 function void end_tr (time end_time=0, bit free_handle=1);

 function integer get_tr_handle ();

 function void disable_recording ();

 function void enable_recording (string stream);

 function bit is_recording_enabled();

 function bit get_transaction_id ();

// Methods to add action during transaction recording

 virtual protected function void do_accept_tr ();

 virtual protected function void do_begin_tr ();

 virtual protected function void do_end_tr ();

// Access methods

 function ovm_event_pool get_event_pool ();

 function time get_begin_time ();

 function time get_end_time ();

 function time get_accept_time ();

ovm_object

ovm_transaction

28

 function void set_transaction_id (integer id);

 function integer get_transaction_id ();

endclass

File

base/ovm_transaction.svh

Virtual

Yes

Members

None

Methods

new
function new (string name="")

Creates a new transaction object. The name is the instance name of the transaction. If
not supplied, then the object is unnamed.

accept_tr
function void accept_tr (time accept_time=0)

Calling accept_tr indicates that the transaction has been accepted for processing by
a consumer component, such as an ovm_driver. With some protocols, the transaction
may not be started immediately after it is accepted. For example, a bus driver may have
to wait for a bus grant before starting the transaction.

This function performs the following actions:

❑ The transaction’s internal accept time is set to the current simulation time, or to
accept_time if provided and non-zero. The accept_time may be any time,
past or future.

❑ The transaction’s internal accept event is triggered. Any processes waiting on the
this event will resume in the next delta cycle.

29

❑ The do_accept_tr method on page 30 is called to allow for any post-accept action
in derived classes.

begin_child_tr
function integer begin_child_tr (time begin_time=0, integer parent_handle)

This function indicates that the transaction has been started as a child of a parent
transaction given by parent_handle. Generally, a consumer component begins
execution of the transactions it receives.

The parent handle is obtained by a previous call to begin_tr or begin_child_tr. If
the parent_handle is invalid (=0), then this function behaves the same as begin_tr.

This function performs the following actions:

❑ The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past
or future, but should not be less than the accept time.

❑ If recording is enabled, then a new database-transaction is started with the same
begin time as above. The record method inherited from ovm_object is then
called, which records the current property values to this new transaction. Finally, the
newly started transaction is linked to the parent transaction given by
parent_handle.

❑ The do_begin_tr method on page 30 is called to allow for any post-begin action
in derived classes.

❑ The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

begin_tr
function integer begin_tr (time begin_time=0)

This function indicates that the transaction has been started and is not the child of
another transaction. Generally, a consumer component begins execution of the
transactions it receives.

This function performs the following actions:

❑ The transaction’s internal start time is set to the current simulation time, or to
begin_time if provided and non-zero. The begin_time may be any time, past
or future, but should not be less than the accept time.

30

❑ If recording is enabled, then a new database-transaction is started with the same
begin time as above. The record method inherited from ovm_object is then
called, which records the current property values to this new transaction.

❑ The do_begin_tr method on page 30 is called to allow for any post-begin action
in derived classes.

❑ The transaction’s internal begin event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

The return value is a transaction handle, which is valid (non-zero) only if recording is
enabled. The meaning of the handle is implementation specific.

disable_recording
function void disable_recording ()

Turns off recording for the transaction.

do_accept_tr
virtual protected function void do_accept_tr ()

This user-definable callback is called by accept_tr just before the accept event is
triggered. Implementations should call super.do_accept_tr to ensure correct
operation.

do_begin_tr
virtual protected function void do_begin_tr ()

This user-definable callback is called by begin_tr and begin_child_tr just before
the begin event is triggered. Implementations should call super.do_begin_tr to
ensure correct operation.

do_end_tr
virtual protected function void do_end_tr ()

This user-definable callback is called by end_tr just before the end event is triggered.
Implementations should call super.do_end_tr to ensure correct operation.

convert2string
virtual function string convert2string ()

This function converts a transaction to a string.

31

The default implementation calls ovm_object::sprint using the default printer.

This method can be overloaded in derived classes to provide an alternate string
representation of the transaction object.

enable_recording
function void enable_recording (string stream)

Turns on recording to the stream specified by stream, whose interpretation is
implementation specific.

If transaction recording is on, then a call to record is made when the transaction is
started and when it is ended.

end_tr
function void end_tr (time end_time=0, bit free_handle=1)

This function indicates that the transaction execution has ended. Generally, a consumer
component ends execution of the transactions it receives.

This function performs the following actions:

❑ The transaction’s internal end time is set to the current simulation time, or to
end_time if provided and non-zero. The end_time may be any time, past or
future, but should not be less than the begin time.

❑ If recording is enabled and a database-transaction is currently active, then the
record method inherited from ovm_object is called, which records the final
property values. The transaction is then ended. If free_handle is set, the
transaction is released and can no longer be linked to (if supported by the
implementation).

❑ The do_end_tr method on page 30 is called to allow for any post-end action in
derived classes.

❑ The transaction’s internal end event is triggered. Any processes waiting on this
event will resume in the next delta cycle.

get_accept_time
function time get_accept_time ()

Returns the accept time for this transaction, as set by a previous call to accept_tr.

32

get_begin_time
function time get_begin_time ()

Returns the begin time for this transaction, as set by a previous call to
begin_child_tr or begin_tr.

get_end_time
function time get_end_time ()

Returns the end time for this transaction, as set by a previous call to end_tr.

get_event_pool
function ovm_event_pool get_event_pool ()

Returns the event pool associated with this transaction.

By default, the event pool contains the events: begin, accept, and end. Events can also
be added by derivative objects. See ovm_event_pool on page 114 for more information.

get_initiator
function ovm_component get_initiator ()

Returns the component that produced or started the transaction, as set by a previous call
to set_initiator.

get_tr_handle
function integer get_tr_handle ()

Returns the handle associated with the transaction, as set by a previous call to
begin_child_tr or begin_tr with transaction recording enabled.

get_transaction_id
function integer get_transaction_id ()

Returns this transaction’s numeric identifier, which is -1 if not set explicitly by
set_transaction_id.

When using sequences to generate stimulus, the transaction ID is used along with the
sequence ID to route responses in sequencers and to correlate responses to requests.

33

is_active
function bit is_active ()

Returns 1 if the transaction has been started but has not yet been ended.

Returns 0 if the transaction has not been started.

is_recording_enabled
function bit is_recording_enabled ()

Returns 1 if recording is currently on.

Returns 0 if recording is currently off.

set_initiator
function void set_initiator (ovm_component initiator)

Sets initiator as the initiator of this transaction.

The initiator can be the component that produces the transaction. It can also be the
component that started the transaction. This or any other usage is up to the transaction
designer.

set_transaction_id
function void set_transaction_id (integer id)

Sets this transaction’s numeric identifier to id. If not set via this method, the transaction
ID defaults to -1.

When using sequences to generate stimulus, the transaction ID is used along with the
sequence ID to route responses in sequencers and to correlate responses to requests.

34

Component Hierarchy

ovm_component

The ovm_component class is the root base class for OVM components. In addition to the
features inherited from ovm_object and ovm_report_object, ovm_component
provides the following interfaces:

■ Hierarchy — provides methods for searching and traversing the component hierarchy.

■ Configuration — provides methods for configuring component topology and other
parameters ahead of and during component construction.

■ Phasing — defines a phased test flow that all components follow. Derived components
implement one or more of the predefined phase callback methods to perform their
function. During simulation, all components’ callbacks are executed in precise order.

■ Factory — provides a convenience interface to the ovm_factory on page 97. The factory
is used to create new components and other objects based on type-wide and
instance-specific configuration.

■ Reporting — provides a convenience interface to the ovm_report_handler on page 79.
All messages, warnings, and errors are processed through this interface.

■ Transaction recording — provides methods for recording the transactions produced or
consumed by the component to a transaction database (vendor specific).

Note: The ovm_component is automatically seeded during construction using OVM
seeding, if enabled. All other objects must be manually reseeded, if appropriate. See reseed
method on page 23 for more information.

ovm_object

ovm_report_object

ovm_component

35

Summary
virtual class ovm_component extends ovm_report_object;

function new (string name, ovm_component parent);

// Hierarchy information and setting

virtual function ovm_component get_parent ();

function int get_num_children ();

function ovm_component get_child (string name);

virtual function string get_full_name ()

virtual function string get_type_name ()

 function int get_first_child (ref string name)

 function int get_next_child (ref string name)

 bit has_child (string name)

 virtual function set_name (string name)

function ovm_component lookup (string hier_name)

// Configuration interface

virtual function void See ovm_phase on page 59 for more information on
phases.set_config_int (string inst_name,

string field_name,

ovm_bitstream_t value);

virtual function void set_config_object (string inst_name,

string field_name,

ovm_object value, bit clone=1);

virtual function void set_config_string (string inst_name,

string field_name,

string value);

virtual function bit get_config_int (string field_name,

inout ovm_bitstream_t value);

virtual function bit get_config_object (string field_name,

inout ovm_object value);

virtual function bit get_config_string (string field_name,

inout string value);

virtual function void apply_config_settings (bit verbose=0);

function void print_config_settings (string field="",

ovm_component comp=null,

bit recurse=0);

static bit print_config_matches = 0;

36

// Phasing interface

virtual function void build ();

virtual function void connect ();

virtual function void end_of_elaboration ();

virtual function void start_of_simulation ();

virtual task run ();

virtual function void extract ();

virtual function void check ();

virtual function void report ();

virtual task suspend ();

virtual task resume ();

virtual function void kill ();

 virtual function void do_kill_all ();

virtual function void status ();

virtual task stop (string ph_name);

protected int enable_stop_interrupt = 0;

// Factory interface

function void print_override_info (string requested_type_name,

string name="");

function ovm_component create_component (string requested_type_name,

string name);

function ovm_object create_object (string requested_type_name,

string name="");

static function void set_type_override (string original_type_name,

string override_type_name,

bit replace=1);

function void set_inst_override (string relative_inst_path,

string original_type_name,

string override_type_name);

static function void set_type_override_by_type

 (ovm_object_wrapper original_type,

ovm_object_wrapper override_type,

bit replace=1);

function void set_inst_override_by_type (string relative_inst_path,

ovm_object_wrapper original_type,

ovm_object_wrapper override_type);

37

// Reporting interface

function void set_report_severity_action_hier (ovm_severity severity,

ovm_action action);

function void set_report_id_action_hier (string id,

ovm_action action);

function void set_report_severity_id_action_hier (ovm_severity severity,

string id,

ovm_action action);

function void set_report_severity_file_hier (ovm_severity severity,

FILE file);

function void set_report_default_file_hier (FILE file);

function void set_report_id_file_hier (string id,

FILE file);

function void set_report_severity_id_file_hier (ovm_severity severity,

string id,

FILE file);

function void set_report_verbosity_level_hier(int verbosity);

// Transaction interface

function void accept_tr (ovm_transaction tr,

time accept_time=0);

function integer begin_tr (ovm_transaction tr,

string stream_name="main",

string label="",

string desc="",

time begin_time=0);

function integer begin_child_tr (ovm_transaction tr,

integer parent_handle=0,

string stream_name="main",

string label="",

string desc="",

time begin_time=0);

function void do_accept_tr (ovm_transaction tr,

time end_time=0,

bit free_handle=1);

function integer record_error_tr (string stream_name="main",

ovm_object info=null,

string label="error_tr",

string desc="",

time error_time=0,

38

bit keep_active=0);

function integer record_event_tr (string stream_name="main",

ovm_object info=null,

string label="event_tr",

string desc="",

time event_time=0,

bit keep_active=0);

virtual protected

function void do_accept_tr (ovm_transaction tr);

virtual protected

function void do_begin_tr (ovm_transaction tr,

string stream_name,

integer tr_handle);

virtual protected

function void do_end_tr (ovm_transaction tr,

integer tr_handle);

endclass

File

base/ovm_component.svh

Virtual

Yes

Methods

new
function new (string name, ovm_component parent)

All components must specify an instance name and a parent component.

The component will be inserted as a child of the parent object. If the parent is null, then
the component will be a top-level component.

All classes derived from ovm_component must call super.new() with appropriate
name and parent arguments.

39

If name is not found in the enclosing topology, then a null object is returned, otherwise a
handle to name is returned.

accept_tr
function void accept_tr (ovm_transaction tr, time accept_time=0)

This function marks the acceptance of a transaction, tr, by this component. Specifically,
it performs the following actions:

❑ Calls the transaction’s accept_tr method, passing to it the accept_time
argument. See accept_tr on page 28 for details.

❑ Calls the component’s do_accept_tr method on page 42 to allow for any
post-begin action in derived classes.

❑ Triggers the component’s internal accept_tr event. Any processes waiting on this
event will resume in the next delta cycle.

apply_config_settings
virtual function void apply_config_settings (bit verbose=0)

This is an automation function called by ovm_component::build() that finds all
configuration overrides matching this component’s full instance name.

The overrides are applied in reverse order by calling the appropriate set_*_local
method (e.g., for an object override, set_object_local is called). By making the calls
in reverse order, the same semantics associated with the get_config* calls are
achieved.

Because apply_config_settings uses the set_*_local methods to apply the
configuration settings, these methods must be overloaded for the component.

Note: The automation macros (`ovm_field_*) are also in effect when
apply_config_settings is called, regardless of whether set_*_local is
overloaded.

If you do not want apply_config_settings to be called for a component, then the
build() method should be overloaded and you should not call super.build(). If this
is done, then you must also set the m_build_done bit.

Likewise, apply_config_settings() can be overloaded, and the meaning of the
automated configuration can be changed (for instance, replaced with get_config*
calls).

40

When the verbose bit is set, all overrides are printed as they are applied. If the
component’s print_config_matches property is set, then
apply_config_settings is automatically called with verbose=1.

begin_tr
function integer begin_tr (ovm_transaction tr,

string stream_name="main",

string label="",

string desc="",

time begin_time=0)

This function marks the start of a transaction, tr, by this component. Specifically, it
performs the following actions:

❑ Calls the transaction’s begin_tr method. The begin_time should be greater
than or equal to the accept time. By default, when begin_time=0, the current
simulation time is used. See begin_tr on page 29 for details.

❑ If recording is enabled (recording_detail != OVM_OFF), then a new
database-transaction is started on the component’s transaction stream given by the
stream argument. No transaction properties are recorded at this time.

❑ Calls the component’s do_begin_tr method on page 43 to allow for any
post-begin action in derived classes.

❑ Triggers the component’s internal begin_tr event. Any processes waiting on this
event will resume in the next delta cycle.

A handle to the transaction is returned. The meaning of this handle, as well as the
interpretation of the arguments stream_name, label, and desc are vendor specific.

begin_child_tr
function integer begin_child_tr (ovm_transaction tr,

integer parent=0,

string stream_name="main",

string label="",

string desc="",

time begin_time=0)

This function marks the start of a child transaction, tr, by this component. Its operation
is identical to that of begin_tr, except that an association is made between this
transaction and the provided parent transaction. This association is vendor-specific.

41

build
virtual function void build()

The build phase callback is the first of several methods automatically called during the
course of simulation. The build phase is the second of a two-pass construction process
(the first is the built-in new method). The build phase can add additional hierarchy
based on configuration information not available at time of initial construction.

Starting after the initial construction phase (new method) has completed, the build
phase consists of calling all components’ build methods recursively top-down, i.e.,
parents’ build are executed before the children. This is the only phase that executes
top-down.

check
virtual function void check()

The check phase callback is one of several methods automatically called during the
course of simulation.

Starting after the extract phase has completed, the check phase consists of calling
all components’ check methods recursively in depth-first, bottom-up order, i.e., children
are executed before their parents.

Generally, derived classes should override this method to perform component specific,
end-of-test checks. Any override should call super.check.

This method should never be called directly.

See ovm_phase on page 59 for more information on phases.

connect
virtual function void connect()

The connect phase callback is one of several methods automatically called during the
course of simulation.

Starting after the build phase has completed, the connect phase consists of calling
all components’ connect methods recursively in depth-first, bottom-up order, i.e.,
children are executed before their parents.

Generally, derived classes should override this method to make port and export
connections via the connect method in ovm_port_base #(IF) on page 162. Any
override should call super.check.

42

This method should never be called directly.

See ovm_phase on page 59 for more information on phases.

create_component
function ovm_component create_component (string requested_type_name,
 string name)

A convenience function for create_component_by_name in ovm_factory on page 97,
this method calls upon the factory to create a new child component whose type
corresponds to the preregistered type name, requested_type_name, and instance
name, name. This method is equivalent to:

factory.create_component_by_name(requested_type_name,
 get_full_name(), name, this);

If the factory determines that a type or instance override exists, the type of the
component created may be different than the requested type. See set_type_override on
page 55 and set_inst_override on page 52. See also ovm_factory on page 97 for details
on factory operation.

create_object
function ovm_object create_object (string requested_type_name,
 string name="")

A convenience function for create_object_by_name in ovm_factory on page 97, this
method calls upon the factory to create a new object whose type corresponds to the
preregistered type name, requested_type_name, and instance name, name. This
method is equivalent to:

factory.create_object_by_name(requested_type_name,
 get_full_name(), name);

If the factory determines that a type or instance override exists, the type of the object
created may be different than the requested type. See ovm_factory on page 97 for
details on factory operation.

do_accept_tr
virtual protected function void do_accept_tr (ovm_transaction tr)

The accept_tr method calls this function to accommodate any user-defined
post-accept action. Implementations should call super.do_accept_tr to ensure
correct operation.

43

do_begin_tr
virtual protected function void do_begin_tr (ovm_transaction tr,

string stream_name,

integer tr_handle)

The begin_tr and begin_child_tr methods call this function to accommodate any
user-defined post-begin action. Implementations should call super.do_begin_tr to
ensure correct operation.

do_end_tr
virtual protected function void end_tr (ovm_transaction tr,

integer tr_handle)

The do_accept_tr method calls this function to accommodate any user-defined
post-end action. Implementations should call super.do_begin_tr to ensure correct
operation.

do_kill_all
virtual function void do_kill_all ()

Recursively kills the process trees associated with the currently running task-based
phase, e.g., run, for this component and all its descendants.

end_tr
function void end_tr (ovm_transaction tr,

time end_time=0,

bit free_handle=1)

This function marks the end of a transaction, tr, by this component. Specifically, it
performs the following actions:

❑ Calls the transaction’s end_tr method. The end_time must at least be greater
than the begin time. By default, when end_time=0, the current simulation time is
used. See end_tr on page 31 for details.

❑ The transaction’s properties are recorded to the database-transaction on which it
was started, and then the transaction is ended. Only those properties handled by
the transaction’s record method are recorded.

❑ Calls the component’s do_end_tr method on page 43 to accommodate any
post-end action in derived classes.

44

❑ Triggers the component’s internal end_tr event. Any processes waiting on this
event will resume in the next delta cycle.

The free_handle bit indicates that this transaction is no longer needed. The
implementation of free_handle is vendor-specific.

end_of_elaboration
virtual function void end_of_elaboration ()

The end_of_elaboration phase callback is one of several methods automatically
called during the course of simulation.

Starting after the connect phase has completed, this phase consists of calling all
components’ end_of_elaboration methods recursively in depth-first, bottom-up
order, i.e., children are executed before their parents.

Generally, derived classes should override this method to perform any checks on the
elaborated hierarchy before the simulation phases begin. Any override should call
super.end_of_elaboration.

This method should never be called directly.

See ovm_phase on page 59 for more information on phases.

extract
virtual function void extract()

The extract phase callback is one of several methods automatically called during the
course of simulation.

Starting after the run phase has completed, the extract phase consists of calling all
components’ extract methods recursively in depth-first, bottom-up order, i.e., children
are executed before their parents.

Generally, derived classes should override this method to collect information for the
subsequent check phase when such information needs to be collected in a hierarchical,
bottom-up manner. Any override should call super.extract.

This method should never be called directly.

See ovm_phase on page 59 for more information on phases.

45

get_config_int

get_config_string

get_config_object
virtual function bit get_config_int (string field_name,

inout ovm_bitstream_t value)

virtual function bit get_config_string (string field_name,

inout ovm_bitstream_t value)

virtual function bit get_config_object (string field_name,

inout ovm_object value, clone=1)

These methods retrieve configuration settings made by previous calls to report,
set_config_string, and set_config_object. As the methods’ names imply,
there is direct support for integral types, strings, and objects. Settings of other types can
be indirectly supported by defining an object to contain them.

Configuration settings are stored in a global table and in each component instance. With
each call to a get_config_* method, a top-down search is made for a setting that
matches this component’s full name and the given field_name. For example, if this
component’s full instance name is top.u1.u2, then the global configuration table is
searched first. If that fails, then it searches the configuration table in component top,
followed by top.u1.

The first instance/field match causes value to be written with the value of the
configuration setting and the return value is 1. If no match is found, then value is
unchanged and the return value is 0.

Calling the get_config_object method requires special handling. Because value is
an output of type ovm_object, you must provide an ovm_object handle to assign to
(not a derived class handle). After the call, you can then $cast to the actual type.

For example, the following code illustrates how a component designer might call upon
the configuration mechanism to assign its data object property. Note that we are
overriding the apply_config_settings.

class mycomponent extends ovm_component;

local myobj_t data;

function void apply_config_settings();

ovm_object tmp;

if(get_config_object("data", tmp))

if (!$cast(data, tmp))

$display("error! config setting for ‘data’ not of type myobj_t");

endfunction

...

46

The above example overrides the apply_config_settings method, which
automatically configures this component’s properties via the set_*_local methods, if
implemented. See set_object_local method on page 23 and
apply_config_settings method on page 39 for details on the automatic
configuration mechanism.

See Members on page 57 for information on setting the global configuration table.

get_first_child

get_child

get_next_child
function int get_first_child (ref string name)

function ovm_component get_child (string name)

function int get_next_child (ref string name)

These methods are used to iterate through this component’s children, if any. For
example, given a component with an object handle, comp, the following code calls print
for each child:

string name;

ovm_component child;

if (comp.get_first_child(name))

 do begin

child = comp.get_child(name);

child.print();

 end while (comp.get_next_child(name));

get_full_name
virtual function string get_full_name ()

Returns the full hierarchical name of this object. The default implementation
concatenates the hierarchical name of the parent, if any, with the leaf name of this object,
as given by get_name.

get_num_children
function int get_num_children ()

Returns the number of this component’s children.

47

get_parent
virtual function ovm_component get_parent ()

Returns a handle to this component’s parent, or null if it has no parent.

get_type_name
virtual function string get_type_name ()

Returns “ovm_component”. Subclasses must override to return the derived type name.

has_child
function int has_child (string name)

Returns 1 if this component has a child with the given name, 0 otherwise.

kill
virtual function void kill ()

Kills the process tree associated with this component’s currently running task-based
phase, e.g., run.

An alternative mechanism for stopping the run phase is the stop request. Calling
global_stop_request on page 281 causes all components’ run processes to be killed,
but only after all components have had the opportunity to complete in progress
transactions and shutdown cleanly via their stop tasks.

lookup
function ovm_component lookup (string hier_name)

Looks for a component with the given hierarchical name relative to this component. If the
given name is preceded with a ‘.’ (dot), then the search begins relative to the top level
(absolute lookup). The handle of the matching component is returned, else null. The
name must not contain wildcards.

print_config_settings
function void print_config_settings(string field="",

ovm_component comp=null,

bit recurse=0)

Called without arguments, print_config_settings prints all configuration
information for this component, as set by previous calls to set_config_*.

48

If field is specified a non-empty, then only the configuration matching the field is
printed. The field cannot contain wildcards.

If comp is specified and non-null, then the configuration for that component is printed,
not this component.

If recurse is set, then configuration information for all children and below are printed
as well.

print_override_info
function void print_override_info(string type_name,

string inst_name="")

This factory debug method performs the same lookup process as create_object and
create_component, but instead of creating an object, it prints information about what
type of object would be created given the provided arguments.

record_error_tr
function integer record_error_tr (string stream_name="main",

ovm_object info=null,

string label="",

string desc="",

time error_time=0,

bit keep_active=0)

This function marks an error transaction by a component. Properties of the given
ovm_object, info, as implemented in its do_record method on page 19, are
recorded to the transaction database.

An error_time of 0 indicates to use the current simulation time.

The keep_active bit determines if the handle should remain active. If
keep_active is 0, then a zero-length error transaction is recorded.

A handle to the database-transaction is returned.

Interpretation of this handle, as well as the strings stream_name, label, and desc, are
vendor-specific.

record_event_tr
function integer record_event_tr (string stream_name="main",

ovm_object info=null,

string label="",

49

string desc="",

time event_time=0,

bit keep_active=0)

This function marks an event transaction by a component.

An event_time of 0 indicates to use the current simulation time.

A handle to the transaction is returned. The keep_active bit determines if the handle
may be used for other vendor-specific purposes.

The strings for stream_name, label, and desc are vendor-specific identifiers for the
transaction.

report
virtual function void report()

The report phase callback is the last of several methods automatically called during
the course of simulation.

Starting after the check phase has completed, the report phase consists of calling all
components’ report methods recursively in depth-first, bottom-up order, i.e., children
are executed before their parents.

Generally, derived classes should override this method to perform component-specific
reporting of test results. Any override should call super.report.

This method should never be called directly.

See ovm_phase on page 59 for more information on phases.

resume
virtual task resume ()

Resumes the process tree associated with this component’s currently running
task-based phase, e.g., run.

run
virtual task run ()

The run phase callback is the only predefined phase that is time-consuming, i.e.,
task-based. It executes after the start_of_simulation phase has completed.
Derived classes should override this method to perform the bulk of its functionality,
forking additional processes if needed.

50

In the run phase, all threaded components’ run tasks are forked as independent
processes. Returning from its run task does not signify completion of a component’s run
phase, and any processes that run may have forked continue to run.

The run phase terminates in one of three ways:

❑ explicit call to global_stop_request — When global_stop_request is called,
an ordered shut-down for the currently running phase begins. First, all enabled
components’ status tasks are called bottom-up, i.e., childrens’ stop tasks are
called before the parent’s. A component is enabled by its
enable_stop_interrupt bit. Each component can implement stop to allow
completion of in-progress transactions, flush queues, and other shut-down activities.
Upon return from stop by all enabled components, the recursive do_kill_all is
called on all top-level component(s).

❑ explicit call to kill or do_kill_all — When kill called, this component's run
processes are killed immediately. The do_kill_all methods applies to this
component and all its descendants. Use of this method is not recommended. It is
better to use the stopping mechanism, which affords a more ordered, safer
shut-down.

❑ timeout — The phase ends if the timeout expires before an explicit call to
global_stop_request or kill. By default, the timeout is set to near the
maximum simulation time possible. You may override this via
set_global_timeout, but you cannot disable the timeout completely.

If the default timeout occurs in your simulation, or if simulation never ends despite
completion of your test stimulus, then it usually indicates a missing call to
global_stop_request.

Note: The deprecated do_test mode has special semantics for ending the run phase.
In this mode, once the top-level ovm_env::run task returns, an automatic call to
global_stop_request is issued, effectively ending the phase.

The run task should never be called directly.

See ovm_phase on page 59 for more information on phases.set_config_int

set_config_string

set_config_object
virtual function void set_config_int (string inst_name,

string field_name,

ovm_bitstream_t value)

51

virtual function void set_config_string (string inst_name,

string field_name,

string value)

virtual function void set_config_object (string inst_name,

string field_name,

ovm_object value,

bit clone=1)

These methods work in conjunction with the get_config_* methods to provide a
configuration setting mechanism for integral, string, and ovm_object-based types.
Settings of other types, such as virtual interfaces and arrays, can be indirectly supported
by defining an object to contain them.

Calling any of set_config_* causes a configuration setting to be created and placed
in a table internal to this component. The configuration setting stores the supplied
inst_name, field_name, and value for later use by descendent components
during their construction.

When a descendant component calls a get_config_* method, the inst_name and
field_name provided in the get call are matched against all the configuration settings
stored in the global table and then in each component in the parent hierarchy, top-down.
Upon the first match, the value stored in the configuration setting is returned. Thus,
precedence is global, following by the top-level component, and so on down to the
descendent component’s parent.

Both inst_name and field_name may contain wildcards.

For set_config_int, value is an integral value that can be anything from 1 bit to
4096 bits.

For set_config_string, value is a string.

For set_config_object, value must be an ovm_object-based object or null. Its
clone argument specifies whether the object should be cloned. If set, then the object
is cloned both going into the table (during the set) and coming out of the table (during the
get), so that multiple components matched to the same setting (by way of wildcards) do
not end up sharing the same object.

See get_config_int, get_config_string, and get_config_object on page 45 for
more information on getting and applying configuration settings. See Members on
page 57 for information on setting the global configuration table.

52

set_inst_override

function void set_inst_override (string relative_inst_path,

string original_type_name,

string override_type_name)

A convenience function for set_inst_override_by_type in ovm_factory on
page 97, this method registers a factory override for components created at this level of
hierarchy or below. In typical usage, this method is equivalent to:

factory.set_inst_override_by_name({get_full_name(),".",
 relative_inst_path},

 original_type_name,
 override_type_name);

The relative_inst_path is relative to this component and may include wildcards.
The original_type_name typically refers to a preregistered type in the factory. It
may, however, be any arbitrary string. Subsequent calls to create_component or
create_object with the same string and matching instance path will produce the type
represented by override_type_name. The override_type_name must refer to
a preregistered type in the factory.

set_inst_override_by_type
function void set_inst_override_by_type (string relative_inst_path,

ovm_object_wrapper original_type,

ovm_object_wrapper override_type)

A convenience function for set_inst_override_by_type in ovm_factory on
page 97, this method registers a factory override for components and objects created at
this level of hierarchy or below. In typical usage, this method is equivalent to:

factory.set_inst_override_by_type({get_full_name(),".",
 relative_inst_path},

 original_type,
 override_type);

The relative_inst_path is relative to this component and may include wildcards.
The original_type represents the type that is being overridden. In subsequent calls
to create_object or create_component, if the requested_type matches the
original_type and the instance paths match, the factory will produce the
override_type.

The original and override types are lightweight proxies to the types they represent. They
can be obtained by calling type::get_type(), if implemented, or by directly calling
type::type_id::get(), where type is the user type and type_id is the typedef
to ovm_object_registry #(T,Tname) or
ovm_component_registry #(T,Tname).

53

The following example illustrates both uses:

class comp extends ovm_component;

 typedef ovm_component_registry #(comp) type_id;

 static function type_id get_type();

 return type_id::get();

 endfunction

 ...

endclass

class mycomp extends ovm_component;

 typedef ovm_component_registry #(mycomp) type_id;

 static function type_id get_type();

 return type_id::get();

 endfunction

 ...

endclass

...

class block extends ovm_component;

 comp c_inst;

 virtual function void build();

 set_inst_override_by_type("c_inst",comp::get_type(),

 mycomp::get_type());

 set_inst_override_by_type("c_inst",comp::type_id::get(),

 mycomp::type_id::get());

 endfunction

 ...

endclass

If you are employing the ‘ovm_*_utils macros, the typedef and the get_type
method will be implemented for you.

set_name
virtual function void set_name (string name)

Renames this component and recalculates all descendants’ full names.

54

set_report_default_file_hier

set_report_id_file_hier

set_report_severity_file_hier

set_report_severity_id_file_hier
function void set_report_default_file_hier (FILE file)

function void set_report_id_file_hier (string id, FILE file)

function void set_report_severity_file_hier (ovm_severity sev, FILE file)

function void set_report_severity_id_file_hier (ovm_severity sev,

string id, FILE file)

These methods recursively configure the report handlers in this component and all its
children to direct some or all of its output to the given file descriptor. The file
argument must be a multi-channel descriptor (mcd) or file id compatible with
$fdisplay.

❑ set_report_default_file_hier hierarchically sets a default file descriptor. It is used
when no other setting applies.

❑ set_report_severity_file_hier hierarchically sets the file descriptor for reports
matching the given severity. This setting takes precedence over the default setting.

❑ set_report_id_file_hier hierarchically sets the file descriptor for reports matching
the given id. This setting takes precedence over the default and any severity
settings from set_report_severity_file_hier.

❑ set_report_severity_id_file_hier hierarchically sets the file descriptor for reports
matching both the given severity and id. This setting takes highest precedence.

For a list of severities and other information related to the report mechanism, refer to
ovm_report_handler on page 79.

set_report_severity_action_hier

set_report_id_action_hier

set_report_severity_id_action_hier
function void set_report_severity_action_hier (ovm_severity severity,

ovm_action action)

function void set_report_id_action_hier (string id,

ovm_action action)

function void set_report_severity_id_action_hier (ovm_severity severity,

55

string id,

ovm_action action)

These methods recursively configure the report handlers in this component and all its
children to perform the given action when issuing reports matching the given
severity, id, or both severity and id.

❑ set_report_severity_action_hier hierarchically sets the action for reports
matching the given sev. This setting takes precedence over the default setting.

❑ set_report_id_action_hier hierarchically sets the action for reports matching
the given id. This setting takes precedence over the default and any severity
settings from set_report_severity_action_hier.

❑ set_report_severity_id_action_hier hierarchically sets the action for reports
matching both the given sev and id. This setting takes highest precedence.

For a list of severities and their default actions, refer to ovm_report_handler on page 79.

set_report_verbosity_level_hier
function void set_report_verbosity_level_hier (int verbosity)

This method recursively configures the report handlers in this component and all its
children to output messages at the given verbosity level and below.

To be displayed, messages must have a verbosity setting equal to or less than
verbosity. To display all messages, set verbosity to a large number (such as
'hfffffff).

See ovm_report_handler on page 79 for a list of predefined message verbosity levels
and their meaning.

set_type_override
static function void set_type_override (string original_type_name,

string override_type_name,

bit replace=1)

A convenience function for calling set_type_override_by_type in ovm_factory on
page 97, this method configures the factory to create an object of type
override_type_name whenever the factory is asked to produce a type represented
by original_type_name. This method is equivalent to:

factory.set_type_override_by_name(original_type_name,
 override_type_name, replace);

The original_type_name typically refers to a preregistered type in the factory. It
may, however, be any arbitrary string. Subsequent calls to create_component or

56

create_object with the same string and matching instance path will produce the type
represented by override_type_name. The override_type_name must refer to
a preregistered type in the factory.

set_type_override_by_type
static function void

 set_type_override_by_type (ovm_object_wrapper original_type,

 ovm_object_wrapper override_type,

 replace=1)

A convenience function for set_type_override_by_type in ovm_factory on
page 97, this method registers a factory override for components and objects created at
this level of hierarchy or below. This method is equivalent to:

factory.set_type_override_by_type(original_type,
 override_type,replace);

The relative_inst_path is relative to this component and may include wildcards.
The original_type represents the type that is being overridden. In subsequent calls
to create_object or create_component, if the requested_type matches the
original_type and the instance paths match, the factory will produce the
override_type.

The original and override type arguments are lightweight proxies to the types they
represent. See set_inst_override_by_type method on page 52 for information on
usage.

start_of_simulation
virtual function void start_of_simulation ()

The start_of_simulation phase callback is one of several methods automatically
called during the course of simulation.

Starting after the end_of_elaboration phase has completed, this phase consists of
calling all components’ start_of_simulation methods recursively in depth-first,
bottom-up order, i.e. children are executed before their parents.

The start_of_simulation phase starts after the end_of_elaboration phase
has completed and before the run phase. In the start_of_simulation phase, all
components’ start_of_simulation methods are called recursively in depth-first,
bottom-up order, i.e., children are executed before their parents.

Generally, derived classes should override this method to perform component-specific
pre-run operations, such as discovery of the elaborated hierarchy, printing banners, etc.
Any override should call super.start_of_simulation.

57

This method should never be called directly.

See ovm_phase on page 59 for more information on phases.

status
function string status ()

Returns the status of the parent process associated with the currently running
task-based phase, e.g., run.

stop
virtual task stop()

This component’s stop task is called when global_stop_request is called during a
task-based phase (e.g., run) and its enable_stop_interrupt bit is set.

Before a phase is abruptly ended, e.g., when a test deems the simulation complete,
some components may need extra time to shut down cleanly. Such components may
implement stop to finish the currently executing transaction, flush the queue, or perform
other cleanup. Upon return from its stop, a component signals it is ready to be stopped.

The stop method will not be called if enable_stop_interrupt=0.

The default implementation of stop is empty, i.e., to return immediately.

The stop method should never be called directly.

suspend
virtual task suspend ()

Suspends the process tree associated with this component’s currently running
task-based phase, e.g., run.

Members

enable_stop_interrupt
bit enable_stop_interrupt = 0

This bit allows a component to raise an objection to the stopping of the current phase. It
affects only time consuming phases (such as the run phase in ovm_component).

When this bit is set, the stop task in the component is called as a result of a call to
global_stop_request.

58

print_config_matches
static bit print_config_matches = 0

This static bit sets up the printing of configuration matches for debug purposes.

When a get_config_* call is used, or when the automatic configuration mechanism
finds a match, the match is printed when print_config_matches is 1.

print_enabled
bit print_enabled = 1

This bit determines if this component should automatically be printed as a child of its
parent object.

By default, all children are printed. However, this bit allows a parent component to disable
the printing of specific children.

59

ovm_phase

The ovm_phase class is used for defining phases for ovm_component and its subclasses.

Phases are a synchronizing mechanism for the environment. They are represented by
callback methods. A set of predefined phases and corresponding callbacks are provided in
ovm_component. Any class deriving from ovm_component may implement any or all of these
callbacks, which are executed in a particular order. Depending on the properties of any given
phase, the corresponding callback is either a function or task, and it is executed in top-down
or bottom-up order.

Table 1-2 on page 59 shows the predefined phases for all ovm_component-based objects:

Table 1-2 Predefined Phases

Phase Phase
Type Description

build function Depending on configuration and factory settings, create
and configure additional component hierarchies.

connect function Connect ports, exports, and implementations (imps).

end_of_elaboration function Perform final configuration, topology, connection, and
other integrity checks.

start_of_simulation function Do pre-run activities such as printing banners,
pre-loading memories, etc.

run task Most verification is done in this time-consuming phase.
May fork other processes. Phase ends when
global_stop_request is called explicitly.

extract function Collect information from the run in preparation for
checking.

check function Check simulation results against expected outcome.

report function Report simulation results.

ovm_phase

60

Summary
virtual class ovm_phase;

function new (string name, bit is_top_down, bit is_task);

function string get_name();

virtual function string get_type_name();

function bit is_task();

function bit is_top_down();

function bit is_in_progress();

function bit is_done();

function bit reset();

virtual task call_task(ovm_component parent);

virtual function void call_func(ovm_component parent);

endclass

File

base/ovm_phases.sv

Virtual

Yes

Methods

new
function new (string name, bit is_top_down, bit is_task);

Creates a phase object.

The name is the name of the phase. When is_top_down is set, the parent is phased
before its children. is_task indicates whether the phase callback is a task (1) or
function (0). Only tasks may consume simulation time and execute blocking statements.

call_task
virtual task call_task (ovm_component parent)

61

Calls the task-based phase of the component given by parent, which must be derived
from ovm_component. A task-based phase is defined by subtyping ovm_phase and
overriding this method. The override must $cast the base parent handle to the actual
component type that defines the phase callback, and then call the phase callback.

call_func
virtual void function call_func (ovm_component parent)

Calls the function-based phase of the component given by parent. A function-based
phase is defined by subtyping ovm_phase and overriding this method. The override
must $cast the base parent handle to the actual component type that defines the phase
callback, and then call that phase callback.

get_name
function string get_name ()

Returns the name of the phase object as supplied in the constructor.

get_type_name
virtual function string get_type_name ()

Returns “ovm_phase”. Subclasses must override to return the derived type name.

is_done
function bit is_done ()

Returns 1 if the phase has completed, 0 otherwise.

is_in_progress
function bit is_in_progress ()

Returns 1 if the phase is currently in progress (active), 0 otherwise.

is_task
function bit is_task ()

Returns 1 if the phase is time consuming and 0 if not.

62

is_top_down
function bit is_top_down ()

Returns 1 if the phase executes top-down (executes the parent’s phase callback before
executing the children’s callback) and 0 otherwise.

reset
function void reset ()

Resets phase state such that is_done and is_in_progress both return 0.

Usage

A phase is defined by an instance of an ovm_phase subtype. If a phase is to be shared
among several component types, the instance must be accessible from a common scope,
such as a package.

To have a user-defined phase get called back during simulation, the phase object must be
registered with the top-level OVM phase controller, ovm_top.

Inheriting from the ovm_phase Class

When creating a user-defined phase, you must do the following:

1. Define a new phase class, which must extend ovm_phase. To enable use of the phase
by any component, we recommend this class be parameterized. The easiest way to
define a new phase is to invoke a predefined macro. For example:

‘ovm_phase_func_topdown_decl(preload)

This convenient phase declaration macro is described below.

2. Create a single instance of the phase in a convenient place—in a package, or in the
same scope as the component classes that will use the phase.

typedef class my_memory;

preload_phase #(my_memory) preload_ph = new;

3. Register the phase object with ovm_top.

class my_memory extends ovm_component;

function new(string name, ovm_component parent);

super.new(name,parent);

ovm_top.insert_phase(preload_ph, start_of_simulation_ph);

endfunction

virtual function void preload();

63

...

endfunction

endclass

Optional Macros

The following macros simplify the process of creating a user-defined phase. They create a
phase type that is parameterized to the component class that uses the phase.

The PHASE_NAME argument is used to define the name of the phase, the name of the
component method that is called back during phase execution, and the prefix to the
type-name of the phase class itself.

`ovm_phase_func_decl
`ovm_phase_func_decl (PHASE_NAME, TOP_DOWN)

This macro creates the following class definition.

class PHASE_NAME``_phase #(type PARENT=int) extends ovm_phase;

PARENT m_parent;

function new();

super.new(`"NAME`",TOP_DOWN,1);

endfunction

virtual function void call_func();

m_parent.NAME(); // call the component’s phase callback

endtask

virtual task execute(ovm_component parent);

assert($cast(m_parent,parent));

call_func();

endtask

endclass

`ovm_phase_task_decl
`ovm_phase_task_decl (PHASE_NAME, TOP_DOWN)

This macro creates the following class definition:

class PHASE_NAME``_phase #(type PARENT=int) extends ovm_phase;

PARENT m_parent;

function new();

super.new(`"NAME`",TOP_DOWN,1);

endfunction

virtual task call_task();

m_parent.NAME(); // call the component’s phase callback

64

endtask

virtual task execute(ovm_component parent);

assert($cast(m_parent,parent));

call_task();

endtask

endclass

`ovm_phase_func_topdown_decl

`ovm_phase_func_bottomup_decl

`ovm_phase_task_topdown_decl

`ovm_phase_task_bottomup_decl
‘define ovm_phase_func_topdown_decl `ovm_phase_func_decl (PHASE_NAME,1)

‘define ovm_phase_func_bottomup_decl `ovm_phase_func_decl (PHASE_NAME,0)

‘define ovm_phase_task_topdown_decl `ovm_phase_task_decl (PHASE_NAME,1)

‘define ovm_phase_task_bottomup_decl `ovm_phase_task_decl (PHASE_NAME,0)

These alternative macros have a single phase name argument. The top-down or
bottom-up selection is specified in the macro name.

65

ovm_root

The ovm_root class provides an implicit top-level and phase control for all OVM
components. A single instance of ovm_root named ovm_top serves as top-level container
for all OVM components and controls all aspects of simulation phases. Any component whose
parent is specified as NULL becomes a child of ovm_top.

Summary
class ovm_root extends ovm_component;

 protected function new ();

 function string get_type_name ();

 task run_test (string test_name="");

 function void insert_phase (ovm_phase new_phase,

 ovm_phase exist_phase);

 function void stop_request ();

 function ovm_component find (string comp_match)

 function void find_all (string comp_match,

 ref ovm_component comps[$],

 input ovm_component comp=null);

 function ovm_phase get_current_phase ();

 bit enable_print_topology = 0;

 bit finish_on_completion = 1;

 time phase_timeout = 0;

 time stop_timeout = 0;

endclass

ovm_object

ovm_report_object

ovm_component

ovm_root

66

File

base/ovm_root.svh

Virtual

No

Methods

new
protected function new ()

Creates an instance of ovm_root, if not already created. Users should never call this
method. It is used once as a static initializer for the ovm_top global variable.

get_type_name
function string get_type_name ()

Returns “ovm_root”.

get_current_phase
function ovm_phase get_current_phase ()

Returns the handle of the currently executing phase.

run_test
task run_test (string test_name="")

Phases all components through all registered phases. If the optional test_name
argument is provided, or if a command-line plusarg, +OVM_TESTNAME=TEST_NAME, is
found, then the specified component is created just prior to phasing. The test may
contain new verification components or the entire testbench, in which case the test and
testbench can be chosen from the command line without forcing recompilation. If the
global (package) variable, finish_on_completion, is set, then $finish is called
after phasing completes.

insert_phase
function void insert_phase (ovm_phase new_phase, ovm_phase exist_phase)

67

This method is used to register phases for later execution by ovm_top, the singleton
instance of ovm_root. The ovm_top maintains a queue of phases executed in
consecutive order. This method allows you to insert new phases into that queue, where
the phase given by new_phase will be inserted after the existing phase given by
exist_phase. If exist_phase is null, then new_phase is inserted at the head of
the queue, i.e., it becomes the first phase.

stop_request
function void stop_request ()

Calling this function triggers the process of shutting down the currently running
task-based phase. This process involves calling all components' stop tasks for those
components whose enable_stop_interrupt bit is set. Once all stop tasks return, or
once the optional global_stop_timeout expires, all components' kill method is
called, effectively ending the current phase. The ovm_top will then begin execution of
the next phase, if any.

find

find_all
function ovm_component find (string comp_match)

function void find_all (string comp_match,

 ref ovm_component comps[$],

 input ovm_component comp=null)

Returns the component handle (find) or list of components handles (find_all)
matching a given string. The string may contain the wildcards, * and ?. Strings beginning
with '.' are absolute path names. If optional comp arg is provided, then search begins
from that component down (default=all components).

Members

enable_print_topology
bit enable_print_topology = 0

If set, then the entire testbench topology is printed just after completion of the
end_of_elaboration phase.

68

finish_on_completion
bit finish_on_completion = 1

If set, then run_test will call $finish after all phases are executed.

phase_timeout

stop_timeout
time phase_timeout = 0

time stop_timeout = 0

These set watchdog timers for task-based phases and stop tasks. You can not disable
the timeouts. When set to 0, a timeout of the maximum time possible is applied. A timeout
at this value usually indicates a problem with your testbench. You should lower the
timeout to prevent "never-ending" simulations.

69

Reporting

The reporting classes provide a facility for issuing reports with different severities and IDs,
and to different files. The primary interface to the reporting facility is ovm_report_object,
which is inherited by ovm_component.

ovm_object

ovm_report_object

ovm_report_server

ovm_report_handler

ovm_component
ovm_reporter

user-defined component

70

ovm_report_object

The ovm_report_object provides an interface to the OVM reporting facility. Through this
interface, components issue the various messages that occur during simulation. They can
also configure what actions are taken and what file(s) are output for individual messages or
for all messages.

Most methods in ovm_report_object are delegated to an instance of an
ovm_report_handler, which stores its component’s reporting configuration and
determines whether an issued message should be displayed based on the configuration. To
display a message, the report handler delegates the actual formatting and production of
messages to a central ovm_report_server.

Summary
virtual class ovm_report_object extends ovm_object;

function new(string name="");

function void ovm_report_fatal(string id, string message,

int verbosity_level=100,

tring filename="", int line=0);

function void ovm_report_error(string id, string message,

int verbosity_level=0,

string filename="", int line=0);

function void ovm_report_warning(string id, string message,

 int verbosity_level=300,

 string filename="", int line=0);

function void ovm_report_info (string id, string message,

 int verbosity_level=200,

 string filename="", int line=0);

virtual function void report_header(FILE file=0);

virtual function void report_summarize(FILE file=0);

function void set_report_handler(ovm_report_handler hndlr);

function ovm_report_handler get_report_handler();

function void reset_report_handler();

ovm_object

ovm_report_object

71

virtual function bit report_hook (string id, string message,

 int verbosity,

 string filename, int line);

virtual function bit report_fatal_hook(string id,

string message,

int verbosity,

string filename, int line);

virtual function bit report_error_hook(string id,

string message,

int verbosity,

string filename, int line);

virtual function bit report_warning_hook(string id,

 string message,

 int verbosity,

 string filename, int line);

virtual function bit report_info_hook (string id,

string message,

int verbosity,

string filename, int line);

function void set_report_max_quit_count(int m);

function void set_report_verbosity_level (int verbosity_level);

function void set_report_severity_action (ovm_severity severity,

ovm_action action);

function void set_report_id_action (string id, ovm_action action);

function void set_report_severity_id_action (ovm_severity severity,

string id, ovm_action action);

function void set_report_default_file (FILE file);

function void set_report_severity_file (ovm_severity severity, FILE file);

function void set_report_id_file (string id, FILE file);

function void set_report_severity_id_file(ovm_severity severity,

string id,

FILE file);

 function ovm_report_server get_report_server ();

 function void dump_report_state ();

virtual function void die();

endclass

72

File

base/ovm_report_object.svh

Virtual

Yes

Methods

new
function new(string name="")

Creates a new report object with the given name. This method also creates a new
ovm_report_handler object, which this object delegates most tasks to.

ovm_report_fatal

ovm_report_error

ovm_report_warning

ovm_report_info
function void ovm_report_fatal(string id, string message,

int verbosity_level=0,

string filename="", int line=0)

function void ovm_report_error(string id, string message,

int verbosity_level=100,

string filename="", int line=0)

function void ovm_report_warning(string id, string message,

int verbosity_level=200,

string filenamee="", int line=0)

function void ovm_report_info(string id, string message,

int verbosity_level=300,

string filename="", int line=0)

These methods produce reports of severity OVM_FATAL, OVM_ERROR, OVM_WARNING,
and OVM_INFO. All message output should come from calls to these four methods.

The id argument is a unique identifier for a message. You can configure an individual
report’s actions and output file descriptor using its id string.

73

The message argument is main body of the message you want displayed.

The verbosity argument specifies the message’s relative importance. If the
verbosity argument is higher than the maximum verbosity setting in the report
handler, this report is simply ignored. The default verbosity levels by severity are:
OVM_FATAL=0, OVM_ERROR=100, warning=200, and info=300. The maximum
verbosity can be set using the set_report_verbosity_level method on page 77
or set_report_verbosity_level_hier method on page 55.

The filename and line arguments allow you to provide the location of the call to the
report methods. If specified, they are displayed in the output.

die
virtual function void die()

This method is called by the report server if a report reaches the maximum quit count or
has an OVM_EXIT action associated with it, e.g., as with fatal errors.

If this report object is a super-class of an ovm_component and the run phase is currently
being executed, then die will issue a global_stop_request, which ends the phase
and allows simulation to continue to subsequent phases.

Otherwise, die calls report_summarize and terminates simulation with $finish.

dump_report_state
function void dump_report_state()

This method dumps the internal state of the report handler. This includes information
about the maximum quit count, the maximum verbosity, and the action and files
associated with severities, ids, and (severity, id) pairs.

get_report_handler
function ovm_report_handler get_report_handler()

Returns the underlying report handler to which most reporting tasks are delegated.

get_report_server
function ovm_report_server get_report_server()

Returns the report server associated with this report object.

74

report_header
virtual function void report_header(FILE file=0)

Prints version and copyright information. This information is sent to the command line if
file is 0, or to the file descriptor file if it is not 0.

This method is called by ovm_env immediately after the construction phase and before
the connect phase.

report_hook

report_info_hook

report_warning_hook

report_error_hook

report_fatal_hook
virtual function bit report_hook (string id, string message,

int verbosity,

string filename, int line)

virtual function bit report_info_hook (string id, string message,

int verbosity,

string filename, int line)

virtual function bit report_warning_hook(string id, string message,

int verbosity,

string filename, int line)

virtual function bit report_error_hook(string id, string message,

int verbosity,

string filename, int line)

virtual function bit report_fatal_hook(string id, string message,

int verbosity,

string filename, int line)

These hook methods can be defined in derived classes to perform additional actions
when reports are issued. They are called only if the OVM_CALL_HOOK bit is specified in
the action associated with the report. The default implementations return 1, which allows
the report to be processed. If an override returns 0, then the report is not processed.

report_summarize
virtual function void report_summarize(FILE file=0)

75

Produces statistical information on the reports issued by the central report server. This
information will be sent to the command line if file is 0, or to the file descriptor file if
it is not 0.

reset_report_handler
function void reset_report_handler()

Re-initializes the component’s report handler to the default settings.

set_report_handler
function void set_report_handler(ovm_report_handler hndlr)

Sets the report handler, thus allowing more than one component to share the same
report handler.

set_report_max_quit_count
function void set_report_max_quit_count(int max_count)

Sets the maximum quit count in the report handler to max_count. When the number of
OVM_COUNT actions reaches max_count, the die method on page 73 is called.

The default value of 0 indicates that there is no upper limit to the number of OVM_COUNT
reports.

set_report_default_file

set_report_severity_file

set_report_id_file

set_report_severity_id_file
function void set_report_default_file (FILE file)

function void set_report_severity_file (ovm_severity sev, FILE file)

function void set_report_id_file (string id, FILE file)

function void set_report_severity_id_file (ovm_severity sev,

string id, FILE file)

These methods configure the report handler to direct some or all of its output to the given
file descriptor. The file argument must be a multi-channel descriptor (mcd) or file
id compatible with $fdisplay.

76

❑ set_report_default_file sets a default file descriptor for all reports issued by this
report handler. The initial descriptor is set to 0, which means that even if the action
includes a OVM_LOG attribute, the report is not sent to a file.

❑ set_report_severity_file sets the file descriptor for reports matching the given
severity. This setting takes precedence over the default file descriptor.

❑ set_report_id_file sets the file descriptor for reports matching the given id. This
setting takes precedence over the default and any severity settings from
set_report_severity_file.

❑ set_report_severity_id_file sets the file descriptor for reports matching both the
given severity and id. This setting takes highest precedence.

See ovm_report_handler on page 79 for more information.

set_report_severity_action

set_report_id_action

set_report_severity_id_action

function void set_report_severity_action (ovm_severity severity,

ovm_action action)

function void set_report_id_action (string id,

ovm_action action)

function void set_report_severity_id_action (ovm_severity severity,

string id,

ovm_action action)

These methods configure the report handler in this component to perform the given
action when issuing reports matching the given severity, id, or severity -id
pair.

❑ set_report_severity_action sets the action for reports matching the given
severity. This setting takes precedence over the default setting.

❑ set_report_id_action sets the action for reports matching the given id. This
setting takes precedence over settings from set_report_severity_action.

❑ set_report_severity_id_action sets the action for reports matching both the
given severity and id. An action associated with a (severity, id) pair takes
priority over an action associated with either the severity or the id alone.

77

The action argument can take the value OVM_NO_ACTION (5'b00000), or it can be
a bitwise OR of any combination of OVM_DISPLAY, OVM_LOG, OVM_COUNT, OVM_EXIT,
and OVM_CALL_HOOK.

For a list of severities and their default actions, refer to ovm_report_handler on page 79.

set_report_verbosity_level
function void set_report_verbosity_level(int verbosity_level)

Sets the maximum verbosity level for the report handler. Any report whose verbosity
exceeds this maximum is ignored.

78

ovm_reporter

The ovm_reporter extends ovm_report_object and is used as a standalone reporter.
Objects that are not ovm_components may use this to issue reports that leverage the same
configuration and formatting features as components.

Summary
class ovm_reporter extends ovm_report_object;

function new(string name="reporter");

endclass

File

base/ovm_report_object.svh

Virtual

No

Methods

new
function new(string name="reporter")

The constructor has the default name of reporter.

ovm_object

ovm_report_object

ovm_reporter

79

ovm_report_handler

ovm_report_handler is the class to which many of the methods in ovm_report_object
are delegated. It stores the maximum verbosity, actions, and files that affect the way reports
are handled.

Note: The report handler is not intended for direct use. See ovm_report_object on page 70
for information on the OVM reporting mechanism.

The relationship between ovm_report_object (a base class for ovm_component) and
ovm_report_handler is usually one to one, but it can, in theory, be many to one. When a
report needs processing, the report handler passes it to the central report server. The
relationship between ovm_report_handler and ovm_report_server is many to one.

Summary
class ovm_report_handler;

function new();

function void initialize();

function void set_max_quit_count(int max_count);

function void set_verbosity_level(int verbosity_level);

function int get_verbosity_level ();

function void set_severity_action(ovm_severity severity, ovm_action action);

function void set_id_action(string id, ovm_action action);

function void set_severity_id_action(ovm_severity severity, string id,

ovm_action action);

function void set_default_file(FILE file);

function void set_severity_file(ovm_severity severity, FILE file);

function void set_id_file(string id, FILE file);

function void set_severity_id_file(ovm_severity severity, string id,

FILE file);

function action get_action(ovm_severity severity, string id);

function FILE get_file_handle(ovm_severity severity, string id);

function string format_action(ovm_action action);

function void initialize(FILE file=0);

function void summarize(FILE file=0);

function void report(ovm_severity severity, string name, string id,

ovm_reporter

80

string message,

int verbosity_level=0,

ovm_report_object client=null);

virtual function bit run_hooks(ovm_report_object client,

ovm_severity severity, string id,

string message, int verbosity,

string filename, int line);

endclass

File

base/ovm_report_handler.svh

Virtual

No

Default Actions

The following table provides the default actions assigned to each severity. These can be
overridden by any of the set_*_action methods.

Default File Handle

The default file handle is 0, which means that reports are not sent to a file even if an
OVM_LOG attribute is set in the action associated with the report.

This can be overridden by any of the set_*_file methods.

Severity Actions

OVM_INFO OVM_DISPLAY

OVM_WARNING OVM_DISPLAY

OVM_ERROR OVM_DISPLAY | OVM_COUNT

OVM_FATAL OVM_DISPLAY | OVM_EXIT

81

Methods

new
function new()

Creates and initializes a new ovm_report_handler object.

format_action
function string format_action(ovm_action action)

Returns a string representation of the action, e.g., “OVM_ERROR”.

initialize
function void initialize()

This method is called by the constructor to initialize the arrays and other variables
described above to their default values.

get_action
function action get_action(ovm_severity severity, string id)

This method looks up the action associated with this severity and id.

get_file_handle
function FILE get_file_handle(ovm_severity severity, string id)

This method returns the file descriptor associated with the given severity and id.

get_verbosity_level
function int get_verbosity_level()

Returns the configured maximum verbosity level.

report
function void report(ovm_severity severity, string name, string id,

string message, int verbosity_level, string filename,

int line, ovm_report_object client)

This is the common handler method used by the four core reporting methods (e.g.,
ovm_report_error) in ovm_report_object on page 70.

82

report_header
function void report_header(FILE file=0)

See corresponding methods in ovm_report_object on page 70.

run_hooks
virtual function bit run_hooks(ovm_report_object client,

ovm_severity severity, string id,

string message, int verbosity,

string filename, int line)

The run_hooks method is called if the OVM_CALL_HOOK action is set for a report. It first
calls the client’s report_hook, followed by the appropriate severity-specific hook
method. If either returns 0, then the report is not processed.

summarize
function void summarize(FILE file=0)

See corresponding methods in ovm_report_object on page 70.

set_max_quit_count
function void set_max_quit_count (int max_count)

See corresponding method in ovm_report_object on page 70.

set_verbosity_level
function void set_verbosity_level(int verbosity_level)

See corresponding method in ovm_report_object on page 70.

set_default_file

set_severity_file

set_id_file

set_severity_id_file
function void set_default_file(FILE file)

function void set_severity_file(ovm_severity severity, FILE file)

function void set_id_file(string id, FILE file)

83

function void set_severity_id_file(ovm_severity severity,

 string id, FILE file)

See the corresponding methods in ovm_report_object on page 70.

set_severity_action

set_id_action

set_severity_id_action
function void set_severity_action (ovm_severity severity,

 ovm_action action)

function void set_id_action (string id, ovm_action action)

function void set_severity_id_action(ovm_severity severity,

 string id, ovm_action action)

See the corresponding methods in ovm_report_object on page 70.

84

ovm_report_server

ovm_report_server is a global server that processes all of the reports generated by an
ovm_report_handler. None of its methods are intended to be called by normal testbench
code, although in some circumstances the virtual methods process_report and/or
compose_ovm_info may be overloaded in a subclass.

Summary
class ovm_report_server;

protected function new();

static function ovm_report_server get_server();

function int get_max_quit_count();

function void set_max_quit_count(int count);

function void reset_quit_count();

function void incr_quit_count();

function int get_quit_count();

function bit is_quit_count_reached();

function void reset_severity_counts();

function int get_severity_count(ovm_severity severity);

function void incr_severity_count(ovm_severity severity);

function void set_id_count(string id, int count);

function int get_id_count(string id);

function void incr_id_count(string id);

function void summarize(FILE file=0);

function void f_ovm_display(FILE file, string str);

function void dump_server_state();

virtual function void process_report(ovm_severity severity, string name,

string id, string message,

ovm_action action,

FILE file,

string filename, int line,

ovm_report_object client);

virtual function string compose_message(ovm_severity severity, string name,

string id, string message);

endclass

ovm_report_server

85

File

base/ovm_report_server.svh

Virtual

No

Methods

new
protected function new ()

Creates the central report server, if not already created. Else, does nothing. The
constructor is protected to enforce a singleton.

get_server
static function ovm_report_server get_server ()

Returns a handle to the central report server.

get_max_quit_count

set_max_quit_count
function int get_max_quit_count ()

function void set_max_quit_count (int count)

Get or set the maximum number of COUNT actions that can be tolerated before an
OVM_EXIT action is taken. The default is 0, which specifies no maximum.

get_quit_count

incr_quit_count

is_quit_count_reached

reset_quit_count
function int get_quit_count ()

function void incr_quit_count ()

86

function bit is_quit_count_reached ()

function void reset_quit_count ()

Get, increment, or reset to 0 the quit count, i.e., the number of COUNT actions issued.

If is_quit_count_reached returns 1, then the quit counter has reached the
maximum.

get_severity_count

incr_severity_count

reset_severity_counts
function int get_severity_count (ovm_severity severity)

function void incr_severity_count (ovm_severity severity)

function void reset_severity_counts ()

Get or increment the counter for the given severity, or reset all severity counters to 0.

get_id_count

incr_id_count

set_id_count
function int get_id_count (string id)

function void incr_id_count (string id)

function void set_id_count (string id, int count)

Get, increment, or set the counter for reports with the given id.

summarize
function void summarize (FILE file=0)

See ovm_report_object::report_summarize method on page 74.

f_ovm_display
function void f_ovm_display (FILE file, string severity)

This method sends string severity to the command line if file is 0 and to the file(s)
specified by file if it is not 0.

87

dump_server_state
function void dump_server_state()

See ovm_report_object::dump_report_state on page 73.

process_report
virtual function void process_report(ovm_severity severity, string name,

string id, string message,

ovm_action action,

FILE file,

string filename, int line,

ovm_report_object client)

This method calls compose_message to construct the actual message to be output. It
then takes the appropriate action according to the value of action and file.

This method can be overloaded by expert users so that the report system processes the
actions different from the way described in ovm_report_object and
ovm_report_handler.

compose_message
virtual function string compose_message(ovm_severity severity, string name,

string id, string message)

This method constructs the actual string sent to the file or command line from the
severity, component name, report id, and the message itself.

Expert users can overload this method to change the formatting of the reports generated
by ovm_report_object.

88

Factory

ovm_object_wrapper

The ovm_object_wrapper provides an abstract interface for creating object and
component proxies. Instances of these lightweight proxies, representing every OVM object
and component available in the test environment, are registered with the ovm_factory.
When the factory is called upon to create an object or component, it finds and delegates the
request to the appropriate proxy.

Summary

virtual class ovm_object_wrapper;

virtual function ovm_object create_object (string name="");

virtual function ovm_component create_component (string name,

ovm_component parent);

pure virtual function string get_type_name();

endclass

File

base/ovm_factory.svh

Virtual

Yes

Methods

create_component
virtual function ovm_component create_component(string name,

ovm_component parent)

Creates a new component, passing to its constructor the given name and parent.

ovm_object_wrapper

89

A component proxy (e.g. ovm_component_registry #(T,Tname) on page 90) implements
this method to create a component of type T.

create_object
virtual function ovm_object create_object(string name="")

Creates a new object, passing to its constructor the optional name.

An object proxy (e.g., ovm_object_registry #(T,Tname) on page 94) implements this
method to create an object of type T.

get_type_name
pure virtual function string get_type_name()

Derived classes implement this method to return the type name of the object created by
create_component or create_object. The factory uses this name when matching
against the requested type.

90

ovm_component_registry #(T,Tname)

The ovm_component_registry serves as a lightweight proxy for a component of type T
and type name Tname, a string. The proxy enables efficient registration with the ovm_factory
on page 97. Without it, registration would require an instance of the component itself.

Summary
class ovm_component_registry #(type T,string Tname="<unknown>")
 extends ovm_object_wrapper;

 typedef ovm_component_registry #(T,Tname) this_type;

 static function this_type get();

 static function T create (string name,

 ovm_component parent,

 string contxt="");

 static function void set_type_override (ovm_object_wrapper override_type,

 bit replace=1);

 static function void set_inst_override (ovm_object_wrapper override_type,

 string inst_path,

 ovm_component parent=null);

 // for use by factory

 const static string type_name = Tname;

 virtual
 function ovm_component create_component (string name,

 ovm_component parent);

 virtual function string get_type_name();

endclass

File

base/ovm_registry.svh

ovm_component_registry #(T,Tname)

ovm_object_wrapper

91

Methods

create_component
function ovm_component create_component (string name, ovm_component parent)

Creates a component of type T having the provided name and parent.

get_type_name
virtual function string get_type_name()

Returns the value Tname.

get
static function this_type get();

Returns the singleton instance of this type. Type-based factory operation depends on
there being a single proxy instance for each registered type.

create

static function T create (string name,

 ovm_component parent,

 string contxt="")

Returns an instance of the component type, T, represented by this proxy, subject to any
factory overrides based on the context provided by the parent’s full name. The
contxt argument, if supplied, supercedes the parent’s context. Regardless of
context, the new instance will have the given leaf name and parent.

set_type_override

static function void set_type_override (ovm_object_wrapper override_type,

 bit replace=1)

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy,
T— provided no instance override applies. The original type, T, is typically a super class
of the override type.

92

set_inst_override

static function void set_inst_override (ovm_object_wrapper override_type,

 string inst_path,

 ovm_component parent=null)

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy, T,
with matching instance paths. The original type, T, is typically a super class of the
override type.

If parent is not specified, the inst_path is interpreted as an absolute instance path,
which enables instance overrides to be set from outside component classes. If parent
is specified, the inst_path is interpreted as being relative to the parent’s
hierarchical instance path, i.e. {parent.get_full_name(),".",inst_path} is
the instance path that is registered with the override. The inst_path may contain
wildcards for matching against multiple contexts.

Usage

To register a particular component type, you need only typedef a specialization of its proxy
class, which is typically done inside the class. For example, to register an OVM component
of type mycomp:

class mycomp extends ovm_component;

 typedef ovm_component_registry #(mycomp,”mycomp”) type_id;

endclass

However, because of differences between simulators, it is necessary to use a macro to
ensure vendor interoperability with factory registration. To register an OVM component of type
mycomp in a vendor-independent way, you would write:

class mycomp extends ovm_component;

 ‘ovm_component_utils(mycomp);

 ...

endclass

The ‘ovm_component_utils macro is for non-parameterized classes. In this example, the
underlying typedef of ovm_component_registry specifies the Tname parameter as
"mycomp", and mycomp’s get_type_name is defined to return the same. With Tname
defined, you can use the factory’s name-based methods to set overrides and create objects
and components of non-parameterized types.

For parameterized types, the type name changes with each specialization, so you can not
specify a Tname inside a parameterized class and get the behavior you want; the same type

93

name string would be registered for all specializations of the class. (The factory would
produce warnings for each specialization beyond the first.) To avoid the warnings and
simulator interoperability issues with parameterized classes, must register parameterized
classes with a different macro.

For example, to register an OVM component of type driver #(T), you would write:

class driver #(type T=int) extends ovm_component;

 ‘ovm_component_param_utils(driver #(T));

 ...

endclass

The ‘ovm_component_param_utils and ‘ovm_object_param_utils macros are
used to register parameterized classes with the factory. Unlike the the non-param versions,
these macros do not specify the Tname parameter in the ovm_component_registry
typedef, and they do not define the get_type_name method for the user class.
Consequently, you will not be able to use the factory’s name-based methods for
parameterized classes. The primary purpose for adding the factory’s type-based methods
was to accommodate registration of parameterized types and eliminate the many sources of
errors associated with string-based factory usage.

94

ovm_object_registry #(T,Tname)

The ovm_object_registry serves as a lightweight proxy for an ovm_object of type T
and type name Tname, a string. The proxy enables efficient registration with the ovm_factory
on page 97. Without it, registration would require an instance of the object itself.

Summary
class ovm_object_registry#(type T, string Tname="<unknown>")
 extends ovm_object_wrapper;

typedef ovm_object_registry #(T,Tname) this_type;

 static function this_type get();

 static function T create (string name="",

 ovm_component parent=null,

 string contxt="");

 static function void set_type_override (ovm_object_wrapper override_type,

 bit replace=1);

 static function void set_inst_override (ovm_object_wrapper override_type,

 string inst_path,

 ovm_component parent=null);

 // for use by factory

 const static string type_name = Tname;

 virtual
 function ovm_object create_object (string name="");

virtual function string get_type_name ();

endclass

File

base/ovm_registry.svh

ovm_object_registry #(T,Tname)

ovm_object_wrapper

95

Methods

create_object

function ovm_object create_object(string name="")

Creates an object of type T.

get_type_name
virtual function string get_type_name()

Returns the value Tname.

get
static function this_type get();

Returns the singleton instance of this proxy type. Type-based factory operation depends
on there being a single proxy instance for each registered type.

create

static function T create (string name="",

 ovm_component parent=null,

 string contxt="")

Returns an instance of the object type, T, represented by this proxy, subject to any factory
overrides based on the context provided by the parent’s full name. The contxt
argument, if supplied, supercedes the parent’s context. The new instance will have the
given leaf name.

set_type_override

static function void set_type_override (ovm_object_wrapper override_type,

 bit replace=1)

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy,
T— provided no instance override applies. The original type, T, is typically a super class
of the override type.

96

set_inst_override

static function void set_inst_override (ovm_object_wrapper override_type,

 string inst_path,

 ovm_component parent=null)

Configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type represented by this proxy, T,
with matching instance paths. The original type, T, is typically a super class of the
override type.

If parent is not specified, the inst_path is interpreted as an absolute instance path,
which enables instance overrides to be set from outside component classes. If parent
is specified, the inst_path is interpreted as being relative to the parent’s
hierarchical instance path, i.e. {parent.get_full_name(),".",inst_path} is
the instance path that is registered with the override. The inst_path may contain
wildcards for matching against multiple contexts.

Usage

See ovm_component_registry #(T,Tname)’s section on Usage on page 92.

97

ovm_factory

As the name implies, ovm_factory is used to manufacture (create) OVM objects and
components. Only one instance of the factory is present in a given simulation (termed a
singleton). Object and component types are registered with the factory using
ovm_object_registry and ovm_component_registry proxy objects.

The factory provides both name-based and type-based interfaces. The type-based interface
is far less prone to errors in usage. When errors do occur, they are caught at compile-time.
The name-based interface is dominated by string arguments that can be misspelled and
provided in the wrong order. Errors in name-based requests might only be caught at the time
of the call, if at all. Further, the name-based interface is not portable across simulators when
used with parameterized classes. See Usage section for details.

Summary
class ovm_factory;

 // type-based interface (preferred)

 function void set_inst_override_by_type (ovm_object_wrapper original_type,

 ovm_object_wrapper override_type,

 string full_inst_path);

 function void set_type_override_by_type (ovm_object_wrapper original_type,

 ovm_object_wrapper override_type,

 bit replace=1);

 function ovm_object create_object_by_type (ovm_object_wrapper requested_type,

 string parent_inst_path="",

 string name="");

 function ovm_component create_component_by_type

 (ovm_object_wrapper requested_type,

 string parent_inst_path="",

 string name,

ovm_factory
0..N

0..N

ovm_component_registry #(T,Tname)

ovm_object_registry #(T,Tname)

ovm_object_wrapper

98

 ovm_component parent);

 // name-based interface

 function void set_inst_override_by_name (string original_type_name,

 string override_type_name,

 string full_inst_path);

 function void set_type_override_by_type(string original_type_name,

 string override_type_name,

 bit replace=1);

 function ovm_object create_object_by_name (string requested_type_name,

 string parent_inst_path="",

 string name="");

 function ovm_component create_component_by_name (string requested_type_name,

 string parent_inst_path="",

 string name,

 ovm_component parent);

 // registration and debug

 function void register (ovm_object_wrapper obj);

 function void print (int all_types=1);

 function void debug_create_by_type (ovm_object_wrapper requested_type,

 string parent_inst_path="",

 string name="");

 function void debug_create_by_name (string requested_type_name,

 string parent_inst_path="",

 string name="");

 function

 ovm_object_wrapper find_override_by_type (ovm_object_wrapper requested_type,

 string full_inst_path);

 function

 ovm_object_wrapper find_override_by_name (string requested_type_name,

 string full_inst_path);

endclass

99

File

base/ovm_factory.svh

Methods

register
function void register (ovm_object_wrapper obj)

Registers the given proxy object, obj, with the factory. The proxy object is a lightweight
substitute for the component or object it represents. When the factory needs to create an
object of a given type, it calls the proxy’s create_object or create_component
method to do so.

When doing name-based operations, the factory calls the proxy’s get_type_name
method to match against the requested_type_name argument in subsequent calls
to create_component_by_name and create_object_by_name. If the proxy
object’s get_type_name method returns the empty string, name-based lookup is
effectively disabled.

create_component_by_type

create_component_by_name

create_object_by_type

create_object_by_name
function ovm_component create_component_by_type

 (ovm_object_wrapper requested_type,

 string parent_inst_path="",

 string name,

 ovm_component parent)

function ovm_component create_component_by_name

 (string requested_type_name,

 string parent_inst_path="",

 string name,

 ovm_component parent)

function ovm_object create_object_by_type(ovm_object_wrapper requested_type,

 string parent_inst_path="",

 string name="")

function ovm_object create_object_by_name(string requested_type_name,

100

 string parent_inst_path="",

 string name="")

Creates and returns a component or object of the requested type, which may be
specified by type or by name. The requested component must be derived from the
ovm_component base class, and the requested object must be derived from the
ovm_object base class.

When requesting by type, the requested_type is a handle to the type’s proxy object.
Preregistration is not required.

When requesting by name, the request_type_name is a string representing the
requested type, which must have been registered with the factory— with that name—
prior to the request. If the factory does not recognize the requested_type_name,
then an error is produced and a null handle returned.

If the optional parent_inst_path is provided, then the concatenation,
{parent_inst_path, ".",name}, forms an instance path (context) that is used to
search for an instance override. The parent_inst_path is obtained via
parent.get_full_name().

If no instance override is found, the factory then searches for a type override.

Once the final override is found, an instance of that component or object is returned in
place of the requested type. New component will have the given name and parent.
New objects will have the given name, if provided.

Override searches are recursively applied, with instance overrides taking precedence
over type overrides. If foo overrides bar, and xyz overrides foo, then a request for bar
will produce xyz. Recursive loops will result in an error, in which case the type returned
will be that which formed the loop. Using the previous example, if bar overrides xyz,
then bar is returned after the error is issued.

print
function void print (int all_types=1)

Prints the state of the ovm_factory, including registered types, instance overrides, and
type overrides.

When all_types is 0, only type and instance overrides are displayed. When
all_types is 1 (default), all registered user-defined types are printed as well, provided
they have names associated with them. When all_types is 2, the OVM types
(prefixed with ovm_) are included in the list of registered types.

101

debug_create_by_type

debug_create_by_name
function void debug_create_by_type (ovm_object_wrapper requested_type,

 string parent_inst_path="",

 string name="")

function void debug_create_by_name (string requested_type_name,

 string parent_inst_path="",

 string name="")

These methods perform the same search algorithm as the create_* methods, but they
do not create new objects. Instead, they provide detailed information about what type of
object it would return, listing each override that was applied to arrive at the result.
Interpretation of the arguments are exactly as with the create_* methods.

find_override_by_name

find_override_by_type
function ovm_object_wrapper find_override_by_type

 (ovm_object_wrapper requested_type, string full_inst_path)

function ovm_object_wrapper find_override_by_name

 (string requested_type_name, string full_inst_path)

These methods return the proxy to the object that would be created given the arguments.
The full_inst_path is typically derived from the parent’s instance path and the leaf
name of the object to be created, i.e. { parent.get_full_name(), ".", name }.

set_inst_override_by_type

set_inst_override_by_name
function void set_inst_override_by_type (ovm_object_wrapper original_type,

 ovm_object_wrapper override_type,

 string full_inst_path)

function void set_inst_override_by_name (string original_type_name,

 string override_type_name,

 string full_inst_path)

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type using a context that matches
full_inst_path. The original type is typically a super class of the override type.

102

When overriding by type, the original_type and override_type are handles to
the types’ proxy objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a
preregistered type in the factory. It may, however, be any arbitrary string. Future calls to
any of the create_* methods with the same string and matching instance path will
produce the type represented by override_type_name. The
override_type_name must refer to a preregistered type in the factory.

The full_inst_path is matched against the contentation of
{parent_inst_path, ".", name} provided in future create requests.The
full_inst_path may include wildcards (* and ?) such that a single instance
override can be applied in multiple contexts. A full_inst_path of "*" is effectively
a type override, as it will match all contexts.

When the factory processes instance overrides, the instance queue is processed in order
of the override call, and the first override match prevails. Thus, more specific overrides
should be registered first, followed by more general overrides.

set_type_override_by_name

set_type_override_by_type
function void set_type_override_by_name (string original_type_name,

 string override_type_name,

 bit replace=1)

function void set_type_override_by_type (ovm_object_wrapper original_type,

 ovm_object_wrapper override_type,

 bit replace=1)

Configures the factory to create an object of the override’s type whenever a request is
made to create an object of the original type, provided no instance override applies. The
original type is typically a super class of the override type.

When overriding by type, the original_type and override_type are handles to
the types’ proxy objects. Preregistration is not required.

When overriding by name, the original_type_name typically refers to a
preregistered type in the factory. It may, however, be any arbitrary string. Future calls to
any of the create_* methods with the same string and matching instance path will
produce the type represented by override_type_name. The
override_type_name must refer to a preregistered type in the factory.

When replace is 1, a previous override on original_type_name is replaced,
otherwise the previous override remains intact.

103

Usage

Using the factory involves three basic operations:

1. Registering objects and components types with the factory

2. Designing components to use the factory to create objects or components

3. Configuring the factory with type and instance overrides, both within and outside
components

We’ll briefly cover each of these steps here. More reference information can be found at
ovm_component_registry #(T,Tname) on page 90, ovm_object_registry #(T,Tname) on
page 94, and ovm_component on page 34.

1 — Registering objects and component types with the factory

When defining ovm_object and ovm_component-based classes, simply invoke the
appropriate macro. Use of macros are required to ensure portability between different
vendors’ simulators.

For objects that are not parameterized:

class packet extends ovm_object;

 ‘ovm_object_utils(packet)

endclass

class packetD extends packet;

 ‘ovm_object_utils(packetD)

endclass

For objects that are parameterized:

class packet #(type T=int, int WIDTH=32) extends ovm_object;

 ‘ovm_object_param_utils(packet #(T,WIDTH))

 endclass

For components that are not parameterized:

class comp extends ovm_component;

 ‘ovm_component_utils(comp)

endclass

For components that are parameterized:

class comp #(type T=int, int WIDTH=32) extends ovm_component;

 ‘ovm_component_param_utils(comp #(T,WIDTH))

endclass

104

The ‘ovm_*_utils macros for simple, non-parameterized classes will register the type with
the factory and define the get_type, get_type_name, and create methods. It will also
define a static type_name variable in the class, which will allow you to determine the type
without having to allocate an instance.

The ‘ovm_*_param_utils macros for parameterized classes differ from ‘ovm_*_utils classes
in the following ways:

■ The get_type_name method and static type_name variable are not defined. You will
need to implement these manually.

■ A type name is not associated with the type when registeriing with the factory, so the
factory’s *_by_name operations will not work with parameterized classes.

■ The factory’s print, debug_create_by_type, and debug_create_by_name
methods, which depend on type names to convey information, will list parameterized
types as <unknown>.

It is worth noting that environments that exclusively use the type-based factory methods
(*_by_type) do not require type registration. The factory’s type-based methods will register
the types involved "on the fly," when first used. However, registering with the ‘ovm_*_utils
macros enables name-based factory usage and implements some useful utility functions.

2 — Designing components that defer creation to the factory

Having registered objects and components with the factory, you can now make requests for
new objects and components via the factory. Using the factory to create objects instead of
allocating them directly (via new) allows different objects to be substituted for the original
without modifying the requesting class. The following code defines a driver base class, which
is parameterized.

class driverB #(type T=ovm_object) extends ovm_driver;

 // parameterized classes must use the _param_utils version

 `ovm_component_param_utils(driverB #(T))

 // our packet type; this can be overridden via the factory

 T pkt;

 // standard component constructor

 function new(string name, ovm_component parent=null);

 super.new(name,parent);

 endfunction

 // get_type_name not implemented by macro for parameterized classes

 const static string type_name = {"driverB #(",T::type_name,")"};

 virtual function string get_type_name();

 return type_name;

 endfunction

105

 // using the factory allows pkt overrides from outside the class

 virtual function void build();

 pkt = packet::type_id::create("pkt",this);

 endfunction

 // print the packet so we can confirm its type when printing

 virtual function void do_print(ovm_printer printer);

 printer.print_object("pkt",pkt);

 endfunction

endclass

For purposes of illustrating type and instance overrides, we define two subtypes of the base
driver class. The subtypes are also parameterized, so we must again provide an
implementation for get_type_name, which we recommend doing in terms of a static string
constant.

class driverD1 #(type T=ovm_object) extends driverB #(T);

 `ovm_component_param_utils(driverD1 #(T))

 function new(string name, ovm_component parent=null);

 super.new(name,parent);

 endfunction

 const static string type_name = {"driverD1 #(",T::type_name,")"};

 virtual function string get_type_name();

 ...return type_name;

 endfunction

endclass

class driverD2 #(type T=ovm_object) extends driverB #(T);

 `ovm_component_param_utils(driverD2 #(T))

 function new(string name, ovm_component parent=null);

 super.new(name,parent);

 endfunction

 const static string type_name = {"driverD2 #(",T::type_name,")"};

 virtual function string get_type_name();

 return type_name;

 endfunction

endclass

// typedef some specializations for convenience

typedef driverB #(packet) B_driver; // the base driver

typedef driverD1 #(packet) D1_driver; // a derived driver

typedef driverD2 #(packet) D2_driver; // another derived driver

106

Next, we’’ define a non-parameterized agent component, which requires a different macro.
Before creating the drivers using the factory, we override driver0’s packet type to be
packetD.

class agent extends ovm_agent;

 `ovm_component_utils(agent)

 ...B_driver driver0;

 B_driver driver1;

 function new(string name, ovm_component parent=null);

 super.new(name,parent);

 endfunction

 virtual function void build();

 // override the packet type for driver0 and below

 packet::type_id::set_inst_override(packetD::get_type(),"driver0.*");

 // create using the factory; actual driver types may be different

 driver0 = B_driver::type_id::create("driver0",this);

 driver1 = B_driver::type_id::create("driver1",this);

 endfunction

endclass

Finally we define an environment class, also not parameterized. Its build method shows three
methods for setting an instance override on a grandchild component with relative path name,
agent1.driver1.

class env extends ovm_env;

 `ovm_component_utils(env)

 agent agent0;

 agent agent1;

 function new(string name, ovm_component parent=null);

 super.new(name,parent);

 endfunction

 virtual function void build();

 // three methods to set an instance override for agent1.driver1

 // - via component convenience method...

 set_inst_override_by_type("agent1.driver1",

 B_driver::get_type(),

 D2_driver::get_type());

 // - via the component’s proxy (same approach as create)...

 B_driver::type_id::set_inst_override(D2_driver::get_type(),

 "agent1.driver1",this);

 // - via a direct call to a factory method...

 factory.set_inst_override_by_type(B_driver::get_type(),

 D2_driver::get_type(),

107

 {get_full_name(),".agent1.driver1"});

 // create agents using the factory; actual agent types may be different

 agent0 = agent::type_id::create("agent0",this);

 agent1 = agent::type_id::create("agent1",this);

 endfunction

 // at end_of_elaboration, print topology and factory state to verify

 virtual function void end_of_elaboration();

 ovm_top.print_topology();

 endfunction

 virtual task run();

 #100 global_stop_request();

 endfunction

endclass

3 — Configuring the factory with type and instance overrides

In the previous step, we demonstrated setting instance overrides and creating components
using the factory within component classes. Here, we will demonstrate setting overrides from
outside components, as when initializing the environment prior to running the test.

module top;

 env env0;

 initial begin

 // Being registered first, the following overrides take precedence

 // over any overrides made within env0's construction & build.

 // Replace all base drivers with derived drivers...

 B_driver::type_id::set_type_override(D_driver::get_type());

 // ...except for agent0.driver0, whose type remains a base driver

 // - via the component’s proxy (preferred)

 B_driver::type_id::set_inst_override(B_driver::get_type(),

 "env0.agent0.driver0");

 // - via a direct call to a factory method

 factory.set_inst_override_by_type(B_driver::get_type(),

 B_driver::get_type(),

 {get_full_name(),"env0.agent0.driver0"});

 // now, create the environment; factory configuration will govern topology

 env0 = new("env0");

 // run the test (will execute build phase)

 run_test();

108

 end

endmodule

When the above example is run, the resulting topology (displayed via a call to
ovm_top.print_topology in env’s end_of_elaboration method) is similar to the
following.

OVM_INFO @ 0 [RNTST] Running test ...
OVM_INFO @ 0 [OVMTOP] OVM testbench topology:
--
Name Type Size Value
--
env0 env - env0@2
agent0 agent - agent0@4
driver0 driverB #(packet) - driver0@8
pkt packet - pkt@21
driver1 driverD #(packet) - driver1@14
pkt packet - pkt@23
agent1 agent - agent1@6
driver0 driverD #(packet) - driver0@24
pkt packet - pkt@37
driver1 driverD2 #(packet) - driver1@30
pkt packet - pkt@39
--

109

Synchronization

ovm_event

The ovm_event class is a wrapper class around a traditional Verilog event.

The ovm_event provides some services on top of a traditional Verilog event, such as setting
callbacks on the event.

Note: Because of the extra overhead associated with an ovm_event object, these objects
should be used sparingly, and should be used only in those places where traditional Verilog
events are not sufficient.

Summary
class ovm_event extends ovm_object;

function new (string name="");

// waiting

virtual task wait_on (bit delta=0);

virtual task wait_off (bit delta=0);

virtual task wait_trigger ();

virtual task wait_ptrigger ();

virtual task wait_trigger_data (output ovm_object data);

virtual task wait_ptrigger_data(output ovm_object data);

// triggering

virtual function void trigger (ovm_object data=null);

virtual function ovm_object get_trigger_data ();

virtual function time get_trigger_time ();

// state

virtual function bit is_on ();

virtual function bit is_off ();

virtual function void reset (bit wakeup=0);

ovm_object

ovm_event

110

// callbacks

virtual function void add_callback (ovm_event_callback cb,

bit append=1);

virtual function void delete_callback (ovm_event_callback cb);

// waiters list

virtual function void cancel ();

virtual function int get_num_waiters ();

endclass

File

base/ovm_event.svh

Virtual

No

Members

None

Methods

new
function new (name)

Creates a new event object.

add_callback
virtual function void add_callback (ovm_event_callback cb, bit append=1)

Adds a callback to the event. Callbacks have a pre_trigger() and post_trigger()
function.

If append is set to 1, which is the default, then the callback is added to the back of the
callback list. Otherwise, the callback is put in the front of the callback list.

111

cancel
virtual function void cancel ()

Decrements the number of waiters on the event.

This is used if a process that is waiting on an event is disabled or activated by some other
means.

delete_callback
virtual function void delete_callback (ovm_event_callback cb)

Removes a callback from the event.

get_num_waiters
virtual function int get_num_waiters ()

Returns the number of processes waiting on the event.

get_trigger_data
virtual function ovm_object get_trigger_data ()

Gets the data, if any, associated with the last trigger event.

get_trigger_time
virtual function time get_trigger_time ()

Gets the time that this event was last triggered. If the event has not been triggered, or
the event has been reset, then the trigger time will be 0.

is_on
virtual function bit is_on ()

Indicates whether the event has been triggered since it was last reset.

A return of 1 indicates that the event has triggered.

is_off
virtual function bit is_off ()

Indicates whether the event has been triggered since it was last reset.

A return of 1 indicates that the event has not been triggered.

112

reset
virtual function void reset (bit wakeup=0)

Resets the event to its off state. If wake-up is set, then all processes waiting for the event
at the time of the reset are activated before the event is reset.

No callbacks are called during a reset.

trigger
virtual function void trigger (ovm_object data=null)

Triggers the event.

This causes all processes waiting on the event to be enabled.

An optional data argument can be supplied with the enable to provide trigger-specific
information.

wait_on
virtual task wait_on (bit delta=0)

Waits for the event to be activated for the first time.

If the event has already been triggered, then this task immediately returns (if the delta bit
is set, then it will cause a #0 delay to be consumed before returning).

Once an event has been triggered, this task will always return immediately unless the
event is reset.

wait_off
virtual task wait_off (bit delta=0)

Waits for the event to be reset if it has already triggered.

If the event has not already been triggered, then this task immediately returns (the delta
bit will cause a #0 delay to be consumed before returning).

wait_ptrigger
virtual task wait_ptrigger ()

Waits for the event to be triggered. Unlike wait_trigger, wait_ptrigger() views
the event as persistent within a time-slice. Thus, if the waiter happens after the trigger,
then the waiter will still see the event trigger during the current time-slice.

113

wait_ptrigger_data
virtual task wait_ptrigger_data (output ovm_object data)

This method is a wrapper for calling wait_ptrigger immediately followed by
get_trigger_data.

wait_trigger
virtual task wait_trigger ()

Waits for the event to be triggered.

If one process calls wait_trigger() and another process calls trigger() in the
same delta cycle, then a race condition occurs and there is no guarantee whether or not
the waiter will see the trigger.

wait_trigger_data
virtual task wait_trigger_data (output ovm_object data)

This method is a wrapper for calling wait_trigger immediately followed by
get_trigger_data.

114

ovm_event_pool

The ovm_event_pool is essentially an associative array of ovm_event objects, which is
indexed by the string name of the event.

Summary
class ovm_event_pool extends ovm_object;

function new (string name="");

// Pool and event access

static function ovm_event_pool get_global_pool ();

virtual function ovm_event get (string name);

// Iterators

virtual function int num ();

virtual function void delete (string name);

virtual function int exists (string name);

virtual function int first (ref string name);

virtual function int last (ref string name);

virtual function int next (ref string name);

virtual function int prev (ref string name);

endclass

File

base/ovm_event.svh

Virtual

No

Members

None

ovm_object

ovm_event_pool

115

Methods

new
function new (string name="")

Creates a new event pool.

delete
virtual function void delete (string name)

Removes the event name from the pool.

exists
virtual function exists (string name)

Checks if the event name exists in the pool.

A return of 1 indicates that name is in the pool and 0 indicates that name is not in the pool.

first
virtual function int first (ref string name)

Places the first event name from the pool into the variable name.

If the pool is empty, then name is unchanged and 0 is returned.

If the pool is not empty, then name gets the value of the first element and 1 is returned.

get
virtual function ovm_event get (string name)

Returns the event with the name specified by name.

If no events exist with the given name, then a new event is created and returned.

get_global_pool
static function ovm_event_pool get_global_pool ()

Accesses the singleton global event pool.

This allows events to be shared amongst components throughout the verification
environment.

116

last
virtual function int last (ref string name)

Returns the name of the last event in the pool.

If the pool is empty, then 0 is returned and name is unchanged.

If the pool is not empty, then name is set to the last name in the pool and 1 is returned.

num
virtual function int num ()

Returns the number of events in the pool.

next
virtual function int next (ref string name)

Uses the current value of name to find the next event name in the pool.

If the input name is the last name in the pool, then name is unchanged and 0 is returned.

If a next name is found, then name is replaced with the next name and 1 is returned.

prev
virtual function int prev (ref string name)

Uses the current value of name to find the previous event name in the pool.

If the input name is the first name in the pool, then name is unchanged and 0 is returned.

If a previous name is found, then name is replaced with the previous name and 1 is
returned.

117

ovm_event_callback

The ovm_event_callback class is an abstract class that is used to create callback objects
which may be attached to events.

Callbacks are an alternative to using processes to wait on events. When a callback is
attached to an event, that callback object’s callback function is called each time the event is
triggered.

Summary
virtual class ovm_event_callback extends ovm_object;

function new (string name="");

virtual function bit pre_trigger (ovm_event e,

ovm_object data=null);

virtual function void post_trigger (ovm_event e,

ovm_object data=null);

endclass

File

base/ovm_event.svh

Virtual

Yes

Members

None

ovm_object

ovm_event_callback

118

Methods

new
function new (string name="")

Creates a new callback object.

pre_trigger
virtual function bit pre_trigger (ovm_event e,

ovm_object data=null)

This function implements the pre_trigger functionality.

If a callback returns 1, then the event will not trigger its waiters. This provides a way for
a callback to override an event action.

In the function, e is the ovm_event that is being triggered, and data is the data, if any,
associated with the event trigger.

post_trigger
virtual function void post_trigger (ovm_event e,

ovm_object data=null)

This function implements the post_trigger functionality.

In the function, e is the ovm_event that is being triggered, and data is the data, if any,
associated with the event trigger.

119

ovm_barrier

The ovm_barrier class provides a multiprocess synchronization mechanism.

The ovm_barrier class enables a set of processes to block until the desired number of
processes get to the synchronization point, at which time all of the processes are released.

Summary
class ovm_barrier extends ovm_object;

function new (string name="");

// waiting

virtual task wait_for ();

virtual function void reset (bit wakeup=1);

virtual function void set_auto_reset (bit value=1);

virtual function void set_threshold (int threshold);

virtual function int get_threshold ();

virtual function int get_num_waiters ();

virtual function void cancel ();

endclass

File

base/ovm_event.svh

Virtual

No

Members

None

ovm_object

ovm_barrier

120

Methods

new
function new (string name="")

Creates a new barrier object.

cancel
virtual function void cancel ()

Decrements the waiter count by one. This is used when a process that is waiting on the
barrier is killed or activated using some other means.

get_num_waiters
virtual function int get_num_waiters ()

Returns the number of processes currently waiting at the barrier.

get_threshold
virtual function int get_threshold ()

Gets the current threshold setting for the barrier.

reset
virtual function void reset (bit wakeup=1)

Resets the barrier. This sets the waiter count back to zero.

The threshold is unchanged. After reset, the barrier will force processes to wait for the
threshold again.

If the wake-up bit is set, then currently waiting processes will be activated.

set_auto_reset
virtual function void set_auto_reset (bit value=1)

Determines if the barrier should reset itself when the threshold is reached.

The default is on, so when a barrier hits its threshold it will reset, and new processes will
block until the threshold is reached again.

121

If auto reset is off, then once the threshold is achieved, new processes pass through
without being blocked, until the barrier is reset.

set_threshold
virtual function void set_threshold (int threshold)

Sets the process threshold.

This determines how many processes must be waiting on the barrier before the
processes may proceed.

Once the threshold is reached, all waiting processes are activated.

If the threshold is set to a value less than the number of waiting processes, then the
barrier is reset and waiting processes are activated.

wait_for
virtual task wait_for ()

Waits for enough processes to reach the barrier before continuing.

The number of processes to wait for is set by the set_threshold() method.

122

ovm_barrier_pool

The ovm_barrier_pool is essentially an associative array of ovm_barrier objects, which
is indexed by the string name of the barrier.

Summary
class ovm_barrier_pool extends ovm_object;

function new (string name="");

// Pool and barrier access

static function ovm_barrier_pool get_global_pool ();

virtual function ovm_barrier get (string name);

// Iterators

virtual function int num ();

virtual function void delete (string name);

virtual function int exists (string name);

virtual function int first (ref string name);

virtual function int last (ref string name);

virtual function int next (ref string name);

virtual function int prev (ref string name);

endclass

File

base/ovm_event.svh

Virtual

No

ovm_object

ovm_barrier_pool

123

Members

None

Methods

new
function new (string name="")

Creates a new barrier pool.

delete
virtual function void delete (string name)

Removes the barrier name from the pool.

exists
virtual function exists (string name)

Checks if the barrier name exists in the pool.

A return of 1 indicates that name is in the pool and 0 indicates that name is not in the pool.

first
virtual function int first (ref string name)

Places the first barrier name from the pool into the variable name.

If the pool is empty, then name is unchanged and 0 is returned.

If the pool is not empty, then name gets the value of the first element and 1 is returned.

get
virtual function ovm_barrier get (string name)

Returns the barrier with the name specified by name.

If no barriers exist with the given name, then a new barrier is created and returned.

get_global_pool
static function ovm_barrier_pool get_global_pool ()

124

Accesses the singleton global barrier pool.

This allows events to be shared amongst components throughout the verification
environment.

last
virtual function int last (ref string name)

Returns the name of the last barrier in the pool.

If the pool is empty, then 0 is returned and name is unchanged.

Otherwise, name is set to the last name in the pool and 1 is returned.

num
virtual function int num ()

Returns the number of barriers in the pool.

next
virtual function int next (ref string name)

Uses the current value of name to find the next barrier name in the pool.

If the input name is the last name in the pool, then name is unchanged and 0 is returned.

If a next name is found, then name is replaced with the next name and 1 is returned.

prev
virtual function int prev (ref string name)

Uses the current value of name to find the previous barrier name in the pool.

If the input name is the first name in the pool, then name is unchanged and 0 is returned.

If a previous name is found, then name is replaced with the previous name and 1 is
returned.

125

Policies

ovm_comparer

The ovm_comparer class provides a policy object for doing comparisons.

The policies determine how miscompares are treated and how they are counted.

Results of a comparison are stored in the comparer object.

Summary
class ovm_comparer;

// Comparison message settings

int unsigned show_max = 1;

int unsigned verbosity = 500;

severity sev = OVM_INFO;

string miscompares = "";

// Comparison settings

bit physical = 1;

bit abstract = 1;

bit check_type = 1;

recursion_policy_enum policy = OVM_DEFAULT_POLICY;

// Result of comparison

int unsigned result = 0;

// Methods used checking for printing information

virtual function bit compare_field (string name,

ovm_bitstream_t lhs,

ovm_bitstream_t rhs,

int size,

radix_enum radix=OVM_NORADIX);

virtual function bit compare_field_int (string name,

logic[63:0] lhs,

logic[63:0] rhs,

ovm_comparer

126

int size,

radix_enum radix=OVM_NORADIX);

virtual function bit compare_object (string name,

ovm_void lhs,

ovm_void rhs);

virtual function bit compare_string (string name,

string lhs,

string rhs);

function void print_msg (string msg);

endclass

File

base/ovm_object.svh

Virtual

No

Members
bit abstract = 1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields.

It is up to you, in the ovm_object::do_compare() routine, to test the setting of this
field if they want to use it as a filter.

bit check_type = 1

This bit determines whether the type, given by ovm_object::get_type_name(), is
used to verify that the types of two objects are the same.

This bit is used by the compare_object() method. In some cases it is useful to set this
to 0 when it is legitimate for one side, for example the rhs, to contain a derivative of the
other side (the lhs).

int unsigned result = 0;

This bit stores the number of miscompares for a given compare operation. You can use
the result to determine the number of miscompares that were found.

string miscompares = “”

127

This string is reset to an empty string when a comparison is started.

The string holds the last set of miscompares that occurred during a comparison.

bit physical = 1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields.

It is up to you, in the ovm_object::do_compare() routine, to test the setting of this
field if they want to use it as a filter.

severity sev = OVM_INFO

Sets the severity for printed messages.

The severity setting is used by the messaging mechanism for printing and filtering
messages.

int unsigned show_max = 1

Sets the maximum number of messages to send to the messager for miscompares of
an object.

All miscompares are stored into the miscompares string.

int unsigned verbosity = 500

Sets the verbosity for printed messages.

The verbosity setting is used by the messaging mechanism to determine whether
messages should be suppressed or shown.

Methods

compare_field
virtual function bit compare_field (string name,

ovm_bitstream_t lhs,

ovm_bitstream_t rhs,

int size,

radix_enum radix=OVM_NORADIX)

Compares two integral values.

The name input is used for purposes of storing and printing a miscompare.

The left-hand-side (lhs) and right-hand-side (rhs) objects are the two objects used for
comparison.

128

The size variable indicates the number of bits to compare; size must be less than or
equal to 4096.

The radix is used for reporting purposes, the default radix is hex.

compare_field_int
virtual function bit compare_field_int (string name,

logic [63:0] lhs,

logic [63:0] rhs,

int size,

radix_enum radix=OVM_NORADIX)

This method is the same as compare_field except that the arguments are small
integers, less than or equal to 64 bits.

compare_object
virtual function bit compare_object (string name,

ovm_void lhs,

ovm_void rhs)

Compares two class objects using the policy value to determine whether the comparison
should be deep, shallow, or reference.

The name input is used for purposes of storing and printing a miscompare.

The lhs and rhs objects are the two objects used for comparison.

The check_type bit is used to determine whether or not to verify the object types match
(the return from lhs.get_type_name() matches rhs.get_type_name()).

compare_string
virtual function bit compare_string (string name,

string lhs,

string rhs)

Compares two string variables.

The name input is used for purposes of storing and printing a miscompare.

The lhs and rhs objects are the two objects used for comparison.

129

print_msg
function void print_msg (string msg)

Causes the error count to be incremented and the message, msg, to be appended to the
miscompares string (a newline is used to separate messages).

If the message count is less than the show_max setting, then the message is printed to
standard-out using the current verbosity and severity settings. See the verbosity and
severity variables for more information.

130

ovm_packer

The ovm_packer class provides a policy object for packing and unpacking ovm_objects.
The policies determine how packing and unpacking should be done. Packing an object
causes the object to be placed into a bit (byte or int) array. By default, no metadata
information is stored for the packing of dynamic objects (strings, arrays, class objects).
Therefore, and in general, it is not possible to automatically unpack into an object which
contains dynamic data (Note that this is only a concern when using the field macros to
automate packing and unpacking).

Summary
class ovm_packer;

bit use_metadata = 0;

bit big_endian = 1;

bit physical = 1;

bit abstract = 0;

recursion_policy_enum policy = OVM_DEFAULT_POLICY;

virtual function void pack_field_int (logic[63:0] value,

int size);

virtual function void pack_field (ovm_bitstream_t value,

int size);

virtual function void pack_string (string value);

virtual function void pack_time (time value);

virtual function void pack_real (real value);

virtual function void pack_object (ovm_void value);

virtual function bit is_null ();

virtual function logic[63:0] unpack_field_int (int size);

virtual function ovm_bitstream_t unpack_field (int size);

virtual function string unpack_string (int num_chars=-1);

virtual function time unpack_time ();

virtual function real unpack_real ();

virtual function void unpack_object (ovm_void value);

virtual function int get_packed_size();

endclass

ovm_packer

131

File

base/ovm_packer.svh

Virtual

No

Members
bit abstract = 0

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields. It is up to you, in the ovm_object::do_pack() and
ovm_object::do_unpack() routines, to test the setting of this field if you want to use
it as a filter.

bit big_endian = 1

This bit determines the order that integral data is packed (using pack_field,
pack_field_int, pack_time, or pack_real) and how the data is unpacked from
the pack array (using unpack_field, unpack_field_int, unpack_time, or
unpack_real). When the bit is set, data is associated msb to lsb; otherwise, it is asso-
ciated lsb to msb.

The following code illustrates how data can be associated msb to lsb and lsb to msb:

class mydata extends ovm_object;

logic[15:0] value = ‘h1234;

function void do_pack (ovm_packer packer);

packer.pack_field_int(value, 16);

endfunction

function void do_unpack (ovm_packer packer);

value = packer.unpack_field_int(16);

endfunction

endclass

mydata d = new;

bit bits[];

initial begin

d.pack(bits); // results in ‘b0001001000110100

ovm_default_packer.big_endian = 0;

d.pack(bits); // results in `b0010110001001000

end

132

bit physical = 1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields. It is up to you, in the ovm_object::do_pack() and
ovm_object::do_unpack() routines, to test the setting of this field if you want to use
it as a filter.

bit use_metadata = 0

This flag indicates whether to encode metadata when packing dynamic data, or to
decode metadata when unpacking. Implementations of do_pack and do_unpack
should regard this bit when performing their respective operation. When set, metadata
should be encoded as follows:

❑ For strings, pack an additional null byte after the string is packed.

❑ For objects, pack 4 bits prior to packing the object itself. Use 4’b0000 to indicate the
object being packed is null, otherwise pack 4’b0001 (the remaining 3 bits are
reserved).

❑ For queues, dynamic arrays, and associative arrays, pack 32 bits indicating the size
of the array prior to to packing individual elements.

Methods

get_packed_size
virtual function int get_packed_size ()

This method returns an int value that represents the number of bits that were packed.

is_null
virtual function bit is_null ()

This method is used during unpack operations to peek at the next 4-bit chunk of the pack
data and determine if it is 0.

If the next four bits are all 0, then the return value is a 1; otherwise it is 0.

This is useful when unpacking objects, to decide whether a new object needs to be
allocated or not.

133

pack_field
virtual function void pack_field (ovm_bitstream_t value,

int size)

Packs an integral field (less than or equal to 4096 bits) into the pack array.

value is the value of the field to pack. size is the number of bits to pack.

pack_field_int
virtual function void pack_field_int (logic[63:0] value,

int size)

Packs an integral field (less than or equal to 64 bits) into the pack array.

value is the value of the field to pack. size is the number of bits to pack.

This specialized version of pack_field() provides a higher performance mechanism
for packing small vectors.

pack_string
virtual function void pack_string (string value)

Packs a string field into the pack array.

value is the value of the field to pack.

A 32-bit header is inserted ahead of the string to indicate the size of the string that was
packed.

This is useful for mixed language communication where unpacking may occur outside of
SystemVerilog OVM.

pack_object
virtual function void pack_object (ovm_object value)

Packs an object field into the pack array.

value is the value of the field to pack.

A 4-bit header is inserted ahead of the string to indicate the number of bits that was
packed. If a null object was packed, then this header will be 0.

This is useful for mixed-language communication where unpacking may occur outside of
SystemVerilog OVM.

134

pack_real
virtual function void pack_real (real value)

Packs a real value as 64 bits into the pack array.

value is the value of the field to pack.

The real value is converted to a 6-bit scalar value using the function $real2bits
before it is packed into the array.

pack_time
virtual function void pack_time (time value)

Packs a time value as 64 bits into the pack array. value is the value of the field to pack.

unpack_field
virtual function ovm_bitstream_t unpack_field (int size)

Unpacks bits from the pack array and returns the bit-stream that was unpacked. size is
the number of bits to unpack; the maximum is 4096 bits.

unpack_field_int
virtual function logic[63:0] unpack_field_int (int size)

Unpacks bits from the pack array and returns the bit-stream that was unpacked.

size is the number of bits to unpack; the maximum is 64 bits.

This is a more efficient variant than unpack_field when unpacking into smaller
vectors.

unpack_string
virtual function string unpack_string ()

Unpacks a string.

The first 32 bits are used to determine the number of characters that the packed string
contains.

If the first 32 bits are 0, then an empty string is returned.

unpack_object
virtual function void unpack_object (ovm_void value)

135

Unpacks an object and stores the result into value.

value must be an allocated object that has enough space for the data being unpacked.
The first four bits of packed data are used to determine if a null object was packed into
the array.

The is_null() function can be used by you to peek at the next four bits in the pack
array before calling unpack_object.

unpack_real
virtual function real unpack_real ()

Unpacks the next 64 bits of the pack array and places them into a real variable.

The 64 bits of packed data are converted to a real using the $bits2real system
function.

unpack_time
virtual function time unpack_time ()

Unpacks the next 64 bits of the pack array and places them into a time variable.

136

ovm_recorder

The ovm_recorder class provides a policy object for recording ovm_objects. The policies
determine how recording should be done.

A default recorder instance, default_recorder, is provided so the
ovm_object::record() may be called without specifying a recorder.

Summary
class ovm_recorder;

integer tr_handle = 0;

radix_enum default_radix = OVM_HEX;

bit physical = 1;

bit abstract = 1;

bit identifier = 1;

recursion_policy_enum policy = OVM_DEFAULT_POLICY;

virtual function void record_field (string name,

ovm_bitstream_t value,

int size,

radix_enum radix=OVM_NORADIX);

virtual function void record_object (string name,

ovm_void value);

virtual function void record_string (string name,

string value);

virtual function void record_time (string name,

time value);

endclass

File

base/ovm_object.svh

Virtual

No

ovm_recorder

137

Members
bit abstract = 1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields.

It is up to you, in the ovm_object::do_pack() and ovm_object::do_unpack()
routines, to test the setting of this field if they want to use it as a filter.

radix_enum default_radix = OVM_HEX

This is the default radix setting if record_field() is called without a radix.

bit identifier = 1

This bit is used to specify whether or not an object’s reference should be recorded when
the object is recorded.

bit physical = 1

This bit provides a filtering mechanism for fields.

The abstract and physical settings allow an object to distinguish between two different
classes of fields.

It is up to you, in the ovm_object::do_pack() and ovm_object::do_unpack()
routines, to test the setting of this field if you want to use it as a filter.

recursion_policy_enum policy = OVM_DEFAULT_POLICY

Sets the recursion policy for recording objects.

The default policy is deep (which means to recurse an object).

integer tr_handle = 0

This is an integral handle to a transaction object. Its use is vendor specific.

A handle of 0 indicates there is no active transaction object.

Methods

new

record_field
virtual function void record_field (string name,

ovm_bitstream_t value,

int size,

138

radix_enum radix=OVM_NORADIX)

Records an integral field (less than or equal to 4096 bits). name is the name of the field.

value is the value of the field to record.

size is the number of bits of the field which apply. radix is the radix to use for recording.

record_string
virtual function void record_string (string name,

string value)

Records a string. value is the value of the field to record.

record_object
virtual function void record_object (string name,

ovm_void value)

Record an object field. name is the name of the field.

This method uses the recursion policy to determine whether or not to recurse into the
object when it records.

record_time
virtual function void record_time (string name,

time value)

Records a time value. name is the name of the field.

139

ovm_printer

The ovm_printer class provides a policy object for printing ovm_objects in various
formats.

A user-defined printer format can be created, or one of the following four built-in printers can
be used:

■ The generic ovm_printer provides a raw, essentially un-formatted, dump of the object.

■ The ovm_table_printer prints the object in a tabular form.

■ The ovm_tree_printer prints the object in a tree form.

■ The ovm_line_printer prints the information on a single line, but uses the same
object separators as the tree printer.

Printers have knobs that you use to control the various settings. These knobs are contained
in separate knob classes.

The following set of default printers are instantiated at time 0:

■ ovm_default_printer (set to the default_table_printer)

■ ovm_default_tree_printer

■ ovm_default_line_printer

■ ovm_default_table_printer

Summary
class ovm_printer;

ovm_printer_knobs knobs = new;

// Primary user level functions called from ovm_object::do_print()

virtual function void print_field (string name,

ovm_bitstream_t value,

ovm_tree_printer

ovm_printer

ovm_line_printer

ovm_table_printer

140

int size,

radix_enum radix=OVM_NORADIX,

byte scope_separator=".",

string type_name="");

virtual function void print_object_header (string name,

ovm_object value,

byte scope_separator=".");

virtual function void print_object (string name,

ovm_object value,

byte scope_separator=".");

virtual function void print_string (string name,

string value,

byte scope_separator=".");

virtual function void print_time (string name,

time value,

byte scope_separator=".");

virtual function void print_generic (string name,

string type_name,

int size,

string value,

byte scope_separator=".");

virtual function void print_array_header (string name,

int size,

string arraytype="array",

byte scope_separator=".");

virtual function void print_array_range (int min,

int max);

virtual function void print_array_footer (int size=0);

// Primary derived class overrides for creating new printers.

virtual function void print_header ();

virtual function void print_footer ();

virtual protected function void print_id (string id,

byte scope_separator=".");

virtual protected function void print_type_name (string name,

bit is_object=0);

virtual protected function void print_size (int size=-1);

virtual protected function void print_newline (bit do_global_indent=1);

virtual protected function void print_value (ovm_bitstream_t value,

int size,

141

radix_enum radix=OVM_NORADIX);

virtual protected function void print_value_object (ovm_object value);

virtual protected function void print_value_string (string value);

virtual protected function void print_value_array (string value="",

int size=0);

endclass

Note: The derived printer classes (ovm_tree_printer, ovm_line_printer, and
ovm_table_printer) do not add any new user level APIs. However, they do add new
knobs, but the visible API of printing is the same for all printers.

File

base/ovm_printer.svh

Virtual

No

Members
ovm_printer_knobs knobs = new

The knob object provides access to the variety of knobs associated with a specific printer
instance.

Each derivative printer class overloads the knobs variable with the specific knob class
that applies to that printer. In this way, you always have direct access to the knobs by way
of the knobs variable.

Global Variables

ovm_default_line_printer
ovm_line_printer default_line_printer = new

The line printer is a global object that can be used with ovm_object::do_print() to
get single-line style printing.

ovm_default_tree_printer
ovm_tree_printer default_tree_printer = new

142

The tree printer is a global object that can be used with ovm_object::do_print() to
get multi-line tree style printing.

ovm_default_table_printer
ovm_table_printer default_table_printer = new

The table printer is a global object that can be used with ovm_object::do_print()
to get tabular style printing.

ovm_default_printer
ovm_printer default_printer = default_table_printer

The default printer is a global object that is used by ovm_object::print() or
ovm_object::sprint() when no specific printer is set.

The default printer may be set to any legal ovm_printer derived type, including the
global line, tree, and table printers described above.

Methods

print_array_header
virtual function void print_array_header (string name,

int size,

string arraytype="array",

byte scope_separator=".")

Prints the header of an array. This function is called before each individual element is
printed. print_array_footer() is called to mark the completion of array printing.

print_array_footer
virtual function void print_array_footer (int size=0)

Prints the header of a footer. This function marks the end of an array print. Generally,
there is no output associated with the array footer, but this method lets the printer know
that the array printing is complete.

print_array_range
virtual function void print_array_range (int min,

int max)

143

Prints a range using ellipses for values. This method is used when honoring the array
knobs for partial printing of large arrays.

This function should be called after the start elements have been printed and before the
end elements have been printed.

print_field
virtual function void print_field (string name,

ovm_bitstream_t value,

int size,

radix_enum radix=OVM_NORADIX,

byte scope_separator=".",

string type-name="")

Prints an integral field. name is the name of the field.

value is the value of the field. size is the number of bits of the field (maximum is 4096).

radix is the radix to use for printing—the printer knob for radix is used if no radix is
specified.

scope_separator is used to find the leaf name since many printers only print the leaf
name of a field.

Typical values for the separator are. (dot) or [(open bracket).

print_generic
virtual function void print_generic (string name,

string type_name,

int size,

string value,

byte scope_separator=".")

Prints a generic value.

The value is specified as a string and the type name is supplied.

print_footer
virtual function void print_footer ()

When creating a new printer type, this method is used to print footer information.

The method is called when the current depth is 0, after all fields have been printed.

144

print_header
virtual function void print_header ()

When creating a new printer type, this method is used to print header information.

The method is called when the current depth is 0, before any fields have been printed.

print_id
virtual protected function void print_id (string id,

byte scope_separator=".")

When creating a new printer type, this method is used to print a field’s name.

The intent of the separator is to mark where the leaf name starts if the printer only prints
the leaf name of the identifier.

This function is called with a fully qualified name for the field.

print_newline
virtual protected function void print_newline (bit do_global_indent=1)

When creating a new printer type, this method is used to indicate a new line. It is up to
the printer to determine how to display new lines.

The do_global_indent bit indicates whether or not the call to print_newline()
should honor the indent knob.

print_object
virtual function void print_object (string name,

ovm_object value,

byte scope_separator=".")

Prints an object. Whether the object is recursed depends on a variety of knobs, such as
the depth knob; if the current depth is at or below the depth setting, then the object is
not recursed.

Note: By default, the children of ovm_components are printed. To turn this behavior off,
you must set the ovm_component::print_enabled bit to 0 for the specific children
you do not want automatically printed.

print_object_header
virtual function void print_object_header (string name,

ovm_object value,

145

byte scope_separator=".")

Prints the header of an object.

This function is called when an object is printed by reference.

For this function, the object will not be recursed.

print_size
virtual protected function void print_size (int size=-1)

When creating a new printer type, this method is used to print a field’s size.

A size value of -1 indicates that no size is available.

print_string
virtual function void print_string (string name,

string value,

byte scope_separator=".")

Prints a string field.

print_time
virtual function void print_time (string name,

time value,

byte scope_separator=".")

Prints a time value. name is the name of the field, and value is the value to print.

The print is subject to the $timeformat system task for formatting time values.

print_type_name
virtual protected function void print_type_name (string name,

bit is_object=0)

When creating a new printer type, this method is used to print a field’s type.

The is_object bit indicates that the item being printed is a ovm_object derived type.

print_value
virtual protected function void print_value (ovm_bitstream_t value,

int size,

146

radix_enum radix=OVM_NORADIX)

When creating a new printer type, this method is used to print an integral field’s value.

The value vector is up to 4096 bits, so the size input indicates the number of bits to
actually print.

The radix input is the radix that should be used for printing the value.

print_value_array
virtual protected function void print_value_array (string value="",

int size=0)

When creating a new printer type, this method is used to print an array’s value.

This only prints the header value of the array, which means that it implements the printer
specific print_array_header().

value is the value to be printed for the array. value is generally the string
representation of size, but it may be any string. size is the number of elements in the
array.

print_value_object
virtual protected function void print_value_object (ovm_object value)

When creating a new printer type, this method is used to print a unique identifier
associated with an object.

print_value_string
virtual protected function void print_value_string (string value)

When creating a new printer type, this method is used to print a string field’s value.

147

Policy Knobs

ovm_printer_knobs

The ovm_printer_knobs classes provide you with formatting control over the various
printers. Each printer has a knob object that can be set to modify how the printer formats
information.

All of the knobs are variables. Most of the knobs exist in the ovm_printer_knobs base
class. The derivative classes provide extra controls that apply only to those printer types.

Summary
class ovm_printer_knobs;

int column = 0;

int max_width = 999;

string truncation = "+";

bit header = 1;

bit footer = 1;

int global_indent = 0;

bit full_name = 1;

bit identifier = 1;

int depth = -1;

bit reference = 1;

bit type_name = 1;

bit size = 1;

radix_enum default_radix = OVM_HEX;

int begin_elements = 5;

int end_elements = 5;

bit show_radix = 1;

ovm_hier_printer_knobs

ovm_printer_knobs

ovm_tree_printer_knobs ovm_table_printer_knobs

148

int mcd = OVM_STDOUT;

string bin_radix = "'b";

string oct_radix = "'o";

string dec_radix = "'d";

string unsigned_radix = "'d";

string hex_radix = "'h";

function string get_radix_str(radix_enum radix);

endclass

class ovm_hier_printer_knobs extends ovm_printer_knobs; string indent_str = "";

 bit show_root = 0;

 string indent_str = " ";

endclass

class ovm_table_printer_knobs extends ovm_hier_printer_knobs;

int name_width = 25;

int type_width = 20;

int size_width = 5;

int value_width = 20;

endclass

class ovm_tree_printer_knobs extends ovm_hier_printer_knobs;

string separator = "{}";

endclass

File

base/ovm_printer.svh

Virtual

No

Members

ovm_printer_knobs
int begin_elements = 5

149

This defines the number of elements at the head of a list that should be printed.

string bin_radix = "'b"

This string should be prepended to the value of an integral type when a radix of OVM_BIN
is used for the radix of the integral object.

int column = 0

This is the column pointer, which is the current column that the printer is pointing to.

This is useful for derivative printers where column information is important, such as the
ovm_table_printer.

string dec_radix = "'d"

This string should be prepended to the value of an integral type when a radix of OVM_DEC
is used for the radix of the integral object.

Note: When a negative number is printed, the radix is not printed since only signed
decimal values can print as negative.

radix_enum default_radix = OVM_HEX

This knob sets the default radix to use for integral values when a radix of OVM_NORADIX
is supplied to the print_field() method.

int depth = -1

This knob indicates how deep to recurse when printing objects.

A depth of -1 means to print everything.

int end_elements = 5

This defines the number of elements at the end of a list that should be printed.

bit footer = 1

This bit indicates whether the print_footer() function should be called when an
object is printed.

If it is desired for a footer to be suppressed, then this bit should be set to 0.

bit full_name = 1

This bit indicates whether the printer should print the full name of an identifier or just the
leaf name when print_id() is called.

The line, table, and tree printers ignore this bit and always print only the leaf name.

int global_indent = 0

This is the number of columns of indentation to add whenever a newline is printed.

bit header = 1

150

This bit indicates whether the print_header() function should be called when an
object is printed.

If it is desired for a header to be suppressed, then this bit should be set to 0.

string hex_radix = "'h"

This string should be prepended to the value of an integral type when a radix of OVM_HEX
is used for the radix of the integral object.

bit identifier = 1

This bit indicates whether the printer should print an identifier when print_id() is
called.

This is useful in cases where you just want the values of an object, but no identifiers.

int max_width = 999

This is the maximum column width to use for a printer. If the current column reaches the
maximum width, then nothing is printed until a newline is printed.

integer mcd = OVM_STDOUT

This is a file descriptor, or multi-channel descriptor, that specifies where the print output
should be directed.

By default, the output goes to the standard output of the simulator.

string oct_radix = "'o"

This string should be prepended to the value of an integral type when a radix of OVM_OCT
is used for the radix of the integral object.

bit reference = 1

This bit indicates whether the printer should print a unique reference ID for an
ovm_object type.

The behavior of this knob is simulator dependent.

bit show_radix = 1

Indicates whether the radix string ('h, and so on) should be prepended to an integral
value when one is printed.

bit size = 1

This bit indicates whether the printer should print the size of the fields that it is printing.

In some cases, printing the size obscures important aspects of the data being printed,
so this information can be turned off.

string truncation = "+"

Used to define the truncation character when a field is too large for the output.

151

For example, the table printer uses this character to truncate fields so that columns do
not overflow.

bit type_name = 1

This bit indicates whether the printer should print the type name of the fields that it is
printing.

In some cases, printing of the type_name obscures the important aspects of the data
being printed, so this information can be turned off.

string unsigned_radix = "'d"

This is the string which should be prepended to the value of an integral type when a radix
of OVM_UNSIGNED is used for the radix of the integral object.

ovm_hier_printer_knobs
string indent_str = " "

This knob specifies the string to use for indentations.

By default, two spaces are used to indent each depth level.

The string can be set to any string and the string will be replicated for the current depth
when indentation is done.

bit show_root = 0

This setting indicates whether or not the initial object that is printed (when current depth
is 0) prints the full path name. By default, the first object is treated like all other objects
and only the leaf name is printed.

ovm_table_printer_knobs
int name_width = 25

This knob sets the width of the name column in the table. If this knob is set to 0, then
the name column will not be printed.

int size_width = 5

This knob sets the width of the size column in the table. If this knob is set to 0, then the
size column will not be printed.

int type_width = 20

This knob sets the width of the type column in the table. If this knob is set to 0, then the
type column will not be printed.

int value_width = 20

152

This knob sets the width of the value column in the table. If this knob is set to 0, then the
value column will not be printed.

ovm_tree_printer_knobs
string separator = "{}"

The separator string is a two character string. The first character is printed when an
object is traversed; it represents the start of the object value.

The second character is printed after the last field in the object has been printed; it
represents the end of the object value.

Methods

get_radix_str
function string get_radix_str (radix_enum radix)

Converts the radix from an enumerated to a printable radix according to the radix
printing knobs (bin_radix, and so on).

Printer Examples

The following examples show the output of a simple data object using the four styles of
printer:

■ Generic

■ Line

■ Tree

■ Table

Example 1-1 on page 152 shows the output from a generic printer.

Example 1-1 Generic Printer, ovm_printer
c1 (container)(@1013)

c1.d1 (mydata)(@1022)

c1.d1.v1 (integral) (32) 'hcb8f1c97

c1.d1.e1 (enum) (32) THREE

c1.d1.str (string) (2) hi

c1.value (integral) (12) 'h2d

153

Example 1-2 on page 153 shows the output from a line printer.

Example 1-2 Line Printer, ovm_line_printer
c1: (container@1013) { d1: (mydata@1022) { v1: 'hcb8f1c97 e1: THREE str: hi }
value: 'h2d }

Example 1-3 on page 153 shows the output from a tree printer.

Example 1-3 Tree Printer, ovm_tree_printer
c1: (container@1013) {

d1: (mydata@1022) {

v1: 'hcb8f1c97

e1: THREE

str: hi

value: 'h2d

}

Example 1-4 on page 153 shows the output from a table printer.

Example 1-4 Table Printer, ovm_table_printer
--

Name Type Size Value

--

c1 container - @1013

d1 mydata - @1022

v1 integral 32 'hcb8f1c97

e1 enum 32 THREE

str string 2 hi

value integral 12 'h2d

--

154

TLM Interfaces

Figure 1-1 Classes for TLM Communication

The OVM TLM library defines several abstract, transaction-level interfaces. Each TLM
interface consists of one or more methods used to transport data. TLM specifies the required
behavior (semantic) of each method, but does not define their implementation. Classes
(components) that implement a TLM interface must meet the specified semantic.

ovm_port_base #(IF)

tlm_if_base #(T1,T2)

ovm_port_component_base

ovm_component

ovm_port_component #(IF)

1

IF=tlm_if_base #(T,T)

ovm_uni-if_export #(T) ovm_uni-if_imp #(T,IMP)ovm_uni-if_imp #(T,IMP)

Unidirectional shown. For bidirectional interfaces, IF is tlm_if_base #(REQ,RSP).

155

tlm_if_base #(T1,T2)

Summary
virtual class tlm_if_base #(type T1=int, type T2=int);

virtual task put(T t);

virtual task get(output T t);

virtual task peek(output T t);

virtual function bit try_put(T t);

virtual function bit can_put();

virtual function bit try_get(output T t);

virtual function bit can_get();

virtual function bit try_peek(output T t);

virtual function bit can_peek();

virtual task transport(REQ req , output RSP rsp);

virtual function bit nb_transport(REQ req,output RSP rsp);

virtual function void write(T t);

endclass

Virtual

Yes

Members

None

Methods

put
virtual task put (T t)

Sends a user-defined transaction of type T.

Components implementing the put method will block the calling thread if it cannot
immediately accept delivery of the transaction.

get
virtual task get (output T t)

156

Provides a new transaction of type T.

The calling thread is blocked if the requested transaction cannot be provided
immediately. The new transaction is returned in the provided output argument.

The implementation of get must regard the transaction as consumed. Subsequent calls
to get must return a different transaction instance.

peek
virtual task peek (output T t)

Obtain a new transaction without consuming it.

If a transaction is available, then it is written to the provided output argument. If a
transaction is not available, then the calling thread is blocked until one is available.

The returned transaction is not consumed. A subsequent peek or get will return the
same transaction.

try_put
virtual function bit try_put (T t)

Sends a transaction of type T, if possible.

If the component is ready to accept the transaction argument, then it does so and returns
1, otherwise it returns 0.

can_put
virtual function bit can_put()

Returns 1 if the component is ready to accept the transaction; 0 otherwise.

try_get
virtual function bit try_get(output T t)

Provides a new transaction of type T. If a transaction is immediately available, then it is
written to the provided output argument and 1 is returned. Otherwise, the output
argument is not modified and 0 is returned.

can_get
virtual function bit can_get()

Returns 1 if a new transaction can be provided immediately upon request, 0 otherwise.

157

try_peek
virtual function bit try_peek(output T t)

Provides a new transaction without consuming it.

If available, a transaction is written to the output argument and 1 is returned. A
subsequent peek or get will return the same transaction. If a transaction is not available,
then the argument is unmodified and 0 is returned.

can_peek
virtual function bit can_peek()

Returns 1 if a new transaction is available; 0 otherwise.

transport
virtual task transport (REQ request, output RSP response)

Sends a transaction request for immediate execution.

A response is provided in the output argument upon return. The calling thread may
block until the response is provided.

nb_transport
virtual function bit nb_transport (REQ request, output REQ response)

Sends a transaction request for immediate execution.

Execution must occur without blocking—for example, no waits and no simulation time
passes. The response is provided in the output argument. If for any reason the
request could not be delivered immediately, then a 0 must be returned; otherwise 1.

write
virtual function void write (T t)

Broadcasts a user-defined transaction of type T to any number of listeners. The calling
thread must not be blocked.

158

Port and Export Connectors

All of the methods of the TLM API are contained in the tlm_if_base #(T1,T2) class.
Various subsets of these methods are combined to form primitive TLM interfaces, which are
then paired in various ways to form more abstract "combination" TLM interfaces. Components
that require a particular interface use ports to convey that requirement. Components that
provide a particular interface use exports to convey its availability.

Communication between components is established by connecting ports to compatible
exports, much like connecting module signal-level output ports to compatible input ports. The
difference is that OVM ports and exports define communication at a much higher level of
abstraction than low-level signals; they convey groups of functions and tasks that pass data
as whole transactions (objects). The set of primitve and combination TLM interfaces afford
many choices for designing components that communicate at the transaction level.

Uni-directional interfaces

Typically, the various forms of the put, get, and peek interfaces are used at one each end
of a uni-directional channel to enable two or more components to communicate.

Bi-directional interfaces

These primitive interfaces are combined to form the master and slave interfaces used in
bi-directional channel communication.

The transport interface is used for a bi-directional channel where requests and responses
are linked together in a non-pipelined fashion.

Analysis interface

An analysis interface is used by a component such as a monitor to publish a transaction to
zero, one, or more subscribers. Typically, it will be used inside a monitor to publish a
transaction observed on a bus to scoreboards and coverage objects.

159

Figure 1-2 TLM Interface Methods Map

put(T)

blocking_put

Primitive TLM interfaces (bold boxes)

try_put(T)

nonblocking_put

can_put()

get(T)

blocking_get

try_get(T)

nonblocking_get

can_get()

peek(T)
blocking_peek

try_peek(T)

nonblocking_peek

can_peek()

write(T)

analysis

transport(REQ,RSP)
blocking_transport

nb_transport(REQ,RSP)

nonblocking_transport

transport

get

get(T)
try_get(T)
can_get()

put

put(T)
try_put(T)
can_put()

peek

peek(T)
try_peek(T)
can_peek()

transport(REQ,RSP)
nb_transport(REQ,RSP)

get_peek

get(T)
try_get(T)
can_get()
peek(T)
try_peek(T)
can_peek()

get(T)
blocking_get_peek

peek(T)

try_get(T)
nonblocking_get_peek

put(REQ)

blocking_master

get(RSP)

try_put(REQ)
nonblocking_master

can_put()

try_get(RSP)
can_get()

master

try_peek(RSP)
can_peek()

put(REQ)
try_put(REQ)
can_put()

get(RSP)
try_get(RSP)
can_get()
peek(RSP)
try_peek(RSP)

get(REQ)
blocking_slave

peek(REQ)

try_get(REQ)
nonblocking_slave

can_get()

try_peek(REQ)
can_peek()

slave

try_put(RSP)
can_put()

get(REQ)
try_get(REQ)
can_get()

peek(REQ)
try_peek(REQ)
can_peek()
put(RSP)
try_put(RSP)
can_put()

put(RSP)peek(RSP)

can_peek()

can_get()
try_peek(T)
can_peek()

combine to form aggregate interfaces.

160

Uni-Directional Interfaces
class ovm_uni-if_export #(type T = int)

extends ovm_port_base #(tlm_if_base #(T,T));

class ovm_uni-if_port #(type T = int)

extends ovm_port_base #(tlm_if_base #(T,T));

class ovm_uni-if_imp #(type T = int)

extends ovm_port_base #(tlm_if_base #(T,T));

Table 1-3 uni-if
blocking_put

nonblocking_put

put

blocking_get

nonblocking_get

get

blocking_peek

nonblocking_peek

peek

blocking_get_peek

nonblocking_get_peek

get_peek

analysis

161

Bi-Directional Interfaces
class ovm_bi-if_export #(type REQ = int , type RSP = int)

extends ovm_port_base #(tlm_if_base #(REQ, RSP));

class ovm_bi-if_port #(type REQ = int , type RSP = int)

extends ovm_port_base #(tlm_if_base #(REQ, RSP));

class ovm_bi-if_imp #(type REQ = int , type RSP = int)

extends ovm_port_base #(tlm_if_base #(REQ, RSP));

Table 1-4 bi-if
blocking_master

nonblocking_master

master

blocking_slave

nonblocking_slave

slave

blocking_transport

nonblocking_transport

transport

162

Ports and Exports

ovm_port_base #(IF)

ovm_port_base is the base class for all ports, exports, and implementations
(ovm_*_port, ovm_*_export, and ovm_*_imp). The ovm_port_base extends IF,
which is the type of the interface implemented by derived port, export, or implementation.

ovm_port_base possesses the properties of components in that they have a hierarchical
instance path and parent. Because SystemVerilog does not support multiple inheritance,
ovm_port_base can not extend both the interface it implements and ovm_component.
Thus, ovm_port_base contains a local instance of ovm_component, to which it
delegates such commands as get_name, get_full_name, and get_parent.

Summary
class ovm_port_base #(type IF=ovm_object) extends ovm_port_base_baseIF;

function new(string name,

ovm_component parent,

ovm_port_type_e port_type,

int min_size=1, int max_size=1);

 function string get_name();

 virtual function string get_full_name();

 virtual function ovm_component get_parent();

 virtual function ovm_port_component_base get_comp();

 virtual function string get_type_name();

 function int max_size ();

 function int min_size ();

 function bit is_unbounded ();

 function bit is_port ();

 function bit is_export ();

 function bit is_imp ();

 function int size ();

 function ovm_port_base #(IF) get_if(int index=0);

 function void get_type_name (int index);

 function void debug_connected_to (int level=0, int max_level=-1);

 function void debug_provided_to (int level=0, int max_level=-1);

 function void resolve_bindings();

 function void connect(this_type provider);

endclass

163

File

base/ovm_port_base.svh

Virtual

Yes

Parameters
type IF = ovm_void

The interface type implemented by the subtype to this base port.

Methods

new
function new(string name, ovm_component parent,

ovm_port_type_e port_type,

int min_size=1,

int max_size=1)

The first two arguments are the normal ovm_component constructor arguments. The
port_type can be one of OVM_PORT, OVM_EXPORT, or OVM_IMPLEMENTATION. The
min_size and max_size specify the minimum and maximum number of
implementation (imp) ports that must be connected to this port base by the end of
elaboration. Setting max_size to OVM_UNBOUNDED_CONNECTIONS sets no maximum,
i.e., an unlimited number of connections are allowed.

connect
function void connect (ovm_port_base #(IF) provider)

Connects this port to the given provider port.

If this port is an OVM_PORT type, the provider can be a parent port, or a sibling export
or implementation port. If the parent / sibling relationship is violated, a warning is issued.

If this port is an OVM_EXPORT type, the provider can be a child export or
implementation port. If the parent / sibling relationship is violated, a warning is issued.

164

If this port is an OVM_IMPLEMENTATION port, an error is produced, as imp ports can only
be bound to the component that implements the interface. You may not call connect on
an implementation port.

debug_connected_to

debug_provided_to
function void debug_connected_to (int level=0, int max_level=-1)

function void debug_provided_to (int level=0, int max_level=-1)

The debug_connected_to method outputs a visual text display of the port/export/imp
network to which this port connects (i.e., the port’s fanout).

The debug_provided_to method outputs a visual display of the port/export network
that ultimately connect to this port (i.e., the port’s fanin).

These methods must not be called before the end_of_elaboration phase, as port
connections have not yet been resolved.

get_name

get_full_name
function string get_name()

virtual function string get_full_name()

Returns the leaf name and full path name to this port.

get_parent
virtual function ovm_component get_parent()

Returns the handle to this port’s parent, or null if it has no parent.

get_comp
virtual function ovm_port_component_base get_comp()

Ports are considered components. However, they do not inherit ovm_component. They
contain a special component instance that serves as a proxy to this port. This method
returns a handle to the internal instance of the proxy component.

get_type_name
virtual function string get_type_name()

165

Returns the type name to this port. Derived port classes must implement this method to
return the concrete type. Otherwise, only a generic "ovm_port", "ovm_export" or
"ovm_implementation" is returned.

is_port

is_export

is_imp
function bit is_port()

function bit is_export()

function bit is_imp()

Returns 1 if this port is of the type given by the method name, 0 otherwise.

is_unbounded
function bit is_unbounded()

Returns 1 if this port has no maximum on the number of implementation (imp) ports this
port can connect to. A port is unbounded when the max_size argument in the
constructor is specified as OVM_UNBOUNDED_CONNECTIONS.

max_size

min_size
function int max_size()

function int min_size()

Returns the mininum and maximum number of implementation ports that must be
connected to this port by the end_of_elaboration phase.

set_default_index
function void set_default_index (int index)

Sets the default implementation port to use when calling an interface method. This
method should only be called on OVM_EXPORT types. The value must not be set before
the end_of_elaboration phase, when port connections have not yet been resolved.

size
function int size()

166

Gets the number of implementation ports connected to this port. The value is not valid
before the end_of_elaboration phase, as port connections have not yet been
resolved.

resolve_bindings
function void resolve_bindings()

Resolves all port connections, producing errors for any port whose min_size or
max_size limits have not been met. This method is automatically called just before the
start of the end_of_elaboration phase.

get_if
function ovm_port_base #(IF) get_if (int index=0)

Returns the implementation (imp) port at the given index from the array of imps this port
is connected to. Use size to get the valid range for index. This method must not be
called before the end_of_elaboration phase, as port connections have not yet been
resolved.

167

ovm_uni-if_port #(T)

An ovm_uni-if_port is a uni-directional connector that requires interfaces from other
components. It gets these interfaces by connecting to an ovm_uni-if_if_port in a
parent component or an ovm_uni-if_imp in a sibling component. There is one export
class for each uni-directional interface. The ovm_uni-if_port classes inherit all methods
(e.g., connect) from its ovm_port_base class.

Summary
class ovm_uni-if_port (type T=int) extends ovm_port_base #(tlm_if_base #(T,T));

function new(string name, ovm_component parent,

 int min_size=1,

 int max_size=1);

endclass

File

tlm/ovm_ports.svh

Parameters
type T = int

The type of transaction to be communicated across the export.

Methods

new
function new(string name, ovm_component parent,

 int min_size=1,

 int max_size=1)

The name and parent are the standard ovm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces
that must have been supplied to this port by the end of elaboration.

168

ovm_bi-if_port #(REQ,RSP)

An ovm_bi-if_port is a bi-directional connector that requires interfaces from other
components. It gets these interfaces by connecting to an ovm_bi-if_port in a parent
component or an ovm_bi-if_imp in a sibling component. There is one export class for
each bi-directional interface. The ovm_bi-if_port classes inherit all methods (e.g.,
connect) from its ovm_port_base class.

Summary
class ovm_bi-if_port #(type REQ=int, RSP=int)

 extends ovm_port_base #(tlm_if_base #(REQ,RSP));

function new(string name, ovm_component parent,

int min_size=1,

int max_size=1);

endclass

File

tlm/ovm_ports.svh

Parameters
type REQ = int

The type of request transaction to be communicated across the export.

type RSP = int

The type of response transaction to be communicated across the export.

Methods

new
function new(string name, ovm_component parent,

 int min_size=1,

int max_size=1)

The name and parent are the standard ovm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces
that must have been supplied to this port by the end of elaboration.

169

ovm_uni-if_export #(T)

An ovm_uni-if_export is a uni-directional connector that provides interfaces to other
components. It provides these interfaces by connecting to a compatible ovm_uni-i
if_export or ovm_uni-if_imp in a child component. There is one export class for each
uni-directional interface. The ovm_uni-if_export classes inherit all methods (e.g., the
connect) from its ovm_port_base class.

Summary
class ovm_uni-if_export #(type T=int) extends ovm_port_base #(tlm_if_base #(T,T));

function new(string name, ovm_component parent,

 int min_size=1,

 int max_size=1);

endclass

File

tlm/ovm_exports.svh

Parameters
type T = int

The type of transaction to be communicated across the export.

Methods

new
function new(string name, ovm_component parent, int min_size=1, int max_size=1)

The name and parent are the standard ovm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces
that must have been supplied to this port by the end of elaboration.

170

ovm_bi-if_export #(REQ,RSP)

An ovm_bi-if_export is a bi-directional connector that provides interfaces to other
components. It provides these interfaces by connecting to an ovm_bi-if_export or
ovm_bi-if_imp in a child component. There is one port class for each bi-directional
interface. The ovm_bi-if_export classes inherit all methods (e.g., connect) from its
ovm_port_base class.

Summary
class ovm_bi-if_export #(type REQ=int, RSP=int)

 extends ovm_port_base #(tlm_if_base #(REQ,RSP));

function new(string name, ovm_component parent,

int min_size=1,

int max_size=1);

endclass

File

tlm/ovm_exports.svh

Parameters
type REQ = int

The type of request transaction to be communicated across the export.

type RSP = int

The type of response transaction to be communicated across the export.

Methods

new
function new(string name, ovm_component parent, int min_size=1, int max_size=1)

The name and parent are the standard ovm_component constructor arguments. The
min_size and max_size specify the minimum and maximum number of interfaces
that must have been supplied to this port by the end of elaboration.

171

ovm_uni-if_imp #(T,IMP)

ovm_uni-if_imp provides the implementations of the methods in tlm_if_base to
ports and exports that require it. The actual implementation of the methods that comprise
tlm_if_base are defined in an object of type IMP, a handle to which is passed in to the
constructor.

Summary
class ovm_uni-if_imp #(type T=int, type IMP=int) extends ovm_port_base

#(tlm_if_base #(T));

function new(string name, IMP imp);

endclass

File

tlm/ovm_imps.svh

Parameters
type T = int

Type of transactions to be communicated across the underlying interface.

type IMP = int

Type of the parent of this implementation.

Methods

new
function new(string name, IMP imp)

The name is the normal first argument to an ovm_component constructor. The imp is
a slightly different form for the second argument to the ovm_component constructor,
which is of type IMP and defines the type of the parent.

Since it is the purpose of an imp class to provide an implementation of a set of interface
tasks and functions, the particular set of tasks and functions available for each
ovm_uni-if_imp class is dependent on the type of the interface it implements, which
is the particular TLM interface it extends.

172

ovm_bi-if_imp #(REQ,RSP,IMP)

ovm_bi-if_imp provides the implementations of the methods in tlm_if_base to ports
and exports that require it. The actual implementation of the methods that comprise
tlm_if_base are defined in an object of type IMP, a handle to which is passed in to the
constructor.

Summary
class ovm_bi-if_imp (type REQ=int, type RSP=int,

type IMP=int,

type REQ_IMP=IMP, type RSP_IMP=IMP)

extends ovm_port_base #(tlm_blocking_master_if #(REQ, RSP));

function new(string name, IMP imp, REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp);

endclass

File

tlm/ovm_imps.svh

Parameters
type REQ = int

Type of transactions to be sent by the master or received by the slave.

type RSP = int

Type of transactions to be received by the master or sent by the slave.

type IMP = int

Type of the parent of this implementation.

type REQ_IMP = IMP

Type of the object that implements the request side of the interface.

type RSP_IMP = IMP

Type of the object that implements the response side of the interface.

Methods

new
function new(string name,

173

IMP imp,

REQ_IMP req_imp=imp,

RSP_IMP rsp_imp=imp)

The name is the normal first argument to an ovm_component constructor. The imp is
a slightly different form for the second argument to the ovm_component constructor,
which is of type IMP and defines the type of the parent. The req_imp and rsp_imp
are optional. If they are specified, then they must point to the underlying implementation
of the request and response methods; tlm_req_rsp_channel, req_imp and
rsp_imp are the request and response FIFOs.

174

sqr_if_base #(REQ,RSP)

This class defines an interface for sequence drivers to communicate with sequencers. The
driver requires the interface via a port, and the sequencer implements it and provides it via
an export.

Summary

virtual class sqr_if_base #(type REQ=ovm_object, RSP=REQ);

 virtual task get_next_item (output REQ request);

 virtual task try_next_item (output REQ request);

 virtual function void item_done (input RSP response=null);

 virtual task wait_for_sequences ();

 virtual function bit has_do_available ();

 virtual task get (output REQ request);

 virtual task peek (output REQ request);

 virtual task put (input RSP response);

endclass

File

tlm/sqr_ifs.svh

Parameters
type REQ = int

Type of the request transaction.

type RSP = REQ

Type of the response transaction.

Methods

get
task get (output REQ request)

seq_if_base #(REQ,RSP)

175

Retrieves the next available item from a sequence. The call blocks until an item is
available. The following steps occur on this call:

1 — Arbitrate among requesting, unlocked, relevant sequences - choose the highest
priority sequence based on the current sequencer arbitration mode. If no sequence is
available, wait for a requesting unlocked relevant sequence, then re-arbitrate.

2 — The chosen sequence will return from wait_for_grant

3 — The chosen sequence pre_do is called

4 — The chosen sequence item is randomized

5 — The chosen sequence post_do is called

6 — Indicate item_done to the sequencer

7 — Return with a reference to the item

When get is called, item_done may not be called. A new item can be obtained by
calling get again, or a response may be sent using either put, or rsp_port.write.

get_next_item
task get_next_item (output REQ request)

Retrieves the next available item from a sequence. The call will block until an item is
available. The following steps occur on this call:

1 — Arbitrate among requesting, unlocked, relevant sequences - choose the highest
priority sequence based on the current sequencer arbitration mode. If no sequence is
available, wait for a requesting unlocked relevant sequence, then re-arbitrate.

2 — The chosen sequence will return from wait_for_grant

3 — The chosen sequence pre_do is called

4 — The chosen sequence item is randomized

5 — The chosen sequence post_do is called

6 — Return with a reference to the item

Once get_next_item is called, item_done must be called to indicate the completion
of the request to the sequencer. This will remove the request item from the sequencer
fifo.

176

has_do_available
function bit has_do_available ()

Indicates whether a sequence item is available for immediate processing.
Implementations should return 1 if an item is available, 0 otherwise.

item_done
function void item_done (RSP response = null)

Indicates that the request is completed to the sequencer. Any wait_for_item_done
calls made by a sequence for this item will return.

The current item is removed from the sequencer fifo.

If a response item is provided, then it will be sent back to the requesting sequence. The
response item must have it's sequence ID and transaction ID set correctly, using the
set_id_info method:

 rsp.set_id_info(req);

Before item_done is called, any calls to peek will retrieve the current item that was
obtained by get_next_item. After item_done is called, peek will cause the
sequencer to arbitrate for a new item.

peek
task peek (output REQ request)

Returns the current request item if one is in the sequencer fifo. If no item is in the fifo,
then the call will block until the sequencer has a new request.

 The following steps will occur if the sequencer fifo is empty:

1 — Arbitrate among requesting, unlocked, relevant sequences - choose the highest
priority sequence based on the current sequencer arbitration mode. If no sequence is
available, wait for a requesting unlocked relevant sequence, then re-arbitrate.

2 — The chosen sequence will return from wait_for_grant

3 — The chosen sequence pre_do is called

4 — The chosen sequence item is randomized

5 — The chosen sequence post_do is called

Once a request item has been retrieved and is in the sequencer fifo, subsequent calls to
peek will return the same item. The item will stay in the fifo until either get or
item_done is called.

177

put
task put (RSP response)

Sends a response back to the sequence that issued the request. Before the response is
put, it must have it's sequence ID and transaction ID set to match the request. This can
be done using the set_id_info call:

 rsp.set_id_info(req);

This task will not block. The response will be put into the sequence response_queue or
it will be sent to the sequence response handler.

try_next_item
task try_next_item (output REQ request)

Retrieves the next available item from a sequence if one is available. Otherwise, the
function returns immediately with request set to null.

 The following steps occur on this call:

1 — Arbitrate among requesting, unlocked, relevant sequences - choose the highest
priority sequence based on the current sequencer arbitration mode. If no sequence is
available, return null.

2 — The chosen sequence will return from wait_for_grant

3 — The chosen sequence pre_do is called

4 — The chosen sequence item is randomized

5 — The chosen sequence post_do is called

6 — Return with a reference to the item

Once try_next_item is called, item_done must be called to indicate the completion
of the request to the sequencer. This will remove the request item from the sequencer
fifo.

wait_for_sequences
task wait_for_sequences ()

Waits for a sequence to have a new item available. The default implementation in the
sequencer delays pound_zero_count delta cycles. (This variable is defined in
ovm_sequencer_base.) User-derived sequencers may override its
wait_for_sequences implementation to perform some other application-specific
implementation.

178

ovm_seq_item_pull_port_type #(REQ,RSP)

OVM provides a port, export, and imp connector for use in sequencer-driver communication.
All have standard port connector constructors, except that ovm_seq_item_pull_port’s
default min_size argument is 0; it can be left unconnected.

Figure 1-3 Port Classes for Sequencer Communication

Summary
class class ovm_seq_item_pull_port #(type REQ=int, type RSP=REQ)

 extends ovm_port_base #(sqr_if_base #(REQ, RSP));

function new(string name, ovm_component parent,

 int min_size=0, int max_size=1);

endclass

class ovm_seq_item_pull_export #(type REQ=int, type RSP=REQ)

 extends ovm_port_base #(sqr_if_base #(REQ, RSP));

function new(string name, ovm_component parent,

 int min_size=1, int max_size=1);

endclass

class ovm_seq_item_pull_imp #(type REQ=int, type RSP=REQ)

 extends ovm_port_base #(sqr_if_base #(REQ, RSP));

function new(string name, ovm_component parent,

 int min_size=1, int max_size=1);

endclass

ovm_port_base #(IF)

sqr_if_base #(REQ,RS

ovm_port_component_base

ovm_component

ovm_port_component #(IF)

1

IF=sqr_if_base #(REQ,RSP)

ovm_seq_item_pull_export ovm_seq_item_pull_impovm_seq_item_pull_port

179

File

tlm/sqr_connections.svh

Parameters
type REQ = int

Type of the request transaction.

type RSP = REQ

Type of the response transaction.

Methods

new
function new (string name, ovm_component parent=null,

 int min_size=1, int max_size=1)

Constructor method. The name and parent are the normal ovm_component
constructor arguments. The min_size and max_size arguments are the normal port
connector arguments. For ovm_seq_item_pull_port, the min_size default is 0,
which means it can be left unconnected.

180

Built-In TLM Channels

The OVM supplies a FIFO channel and a variety of interfaces to access it. The interfaces have
both blocking and non-blocking forms. Because SystemVerilog does not support multiple
inheritance, the FIFO has a collection of imps implementations of abstract interfaces that are
used to access the FIFO. The FIFO is a named component and thus has a name and a
location in the component hierarchy.

Figure 1-4 Predefined TLM Channels

ovm_component

tlm_fifo #(T)

tlm_analysis_fifo #(T)

tlm_req_rsp_channel #(REQ,RSP)

tlm_transport_channel #(REQ,RSP)

181

tlm_fifo #(T)

The tlm_fifo is a FIFO that implements all the uni-directional TLM interfaces.

Summary
class tlm_fifo #(type T=int) extends ovm_component;

function new (string name, ovm_component parent=null, int size=1);

ovm_put_imp #(T, this_type) put_export;

ovm_get_peek_imp #(T, this_type) get_peek_export;

ovm_analysis_port #(T) put_ap;

ovm_analysis_port #(T) get_ap;

function void flush ();

function int size ();

endclass

File

tlm/tlm_fifos.svh

Virtual

No

Parameters
type T = int

ovm_object

ovm_report_object

ovm_component

tlm_fifo #(T)

182

Type of transactions to be stored in the FIFO.

Members

put_export
ovm_put_imp #(T, tlm_fifo #(T)) put_export

The put_export provides both the blocking and non-blocking put interface methods:

task put (input T t)

function bit can_put ()

function bit try_put (input T t)

Any put port variant can connect and send transactions to the FIFO via this export,
provided the transaction types match.

get_peek_export
ovm_get_peek_imp #(T, tlm_fifo #(T)) get_peek_export

The get_peek_export provides all the blocking and non-blocking get and peek
interface methods:

task get (output T t)

function bit can_get ()

function bit try_get (output T t)

task peek (output T t)

function bit can_peek ()

function bit try_peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the FIFO via
this export, provided the transaction types match.

put_ap
ovm_analysis_port #(T) put_ap

Transactions passed via put or try_put (via any port connected to the put_export)
are sent out this port via its write method.

function void write (T t)

 All connected analysis exports and imps will receive these transactions.

183

get_ap
ovm_analysis_port #(T) get_ap

Transactions passed via get, try_get, peek, or try_peek (via any port connected to
the get_peek_export) are sent out this port via its write method.

function void write (T t)

All connected analysis exports and imps will receive these transactions.

Methods

new
function new (string name, ovm_component parent=null, int size=1)

The name and parent are the normal ovm_component constructor arguments. The
parent should be null if the tlm_fifo is going to be used in a statically elaborated
construct (e.g., a module). The size indicates the maximum size of the FIFO; a value
of zero indicates no upper bound.

flush
function void flush()

Removes all entries from the FIFO, after which size returns 0.

size
function int size()

This returns the number of entries in the FIFO.

184

tlm_analysis_fifo #(T)

An analysis_fifo is a tlm_fifo with an unbounded size and a write interface. It can
be used any place an ovm_subscriber is used. Typical usage is as a buffer between an
analysis_port in a monitor and an analysis component (a component derived from
ovm_subscriber).

Summary
class tlm_analysis_fifo #(type T=int) extends tlm_fifo #(T);

function new (string name, ovm_component parent=null);

ovm_analysis_imp #(T, tlm_analysis_fifo #(T)) analysis_export;

endclass

File

tlm/tlm_fifos.svh

Virtual

No

Parameters
type T = int

Type of transactions to be stored in the FIFO.

ovm_object

ovm_report_object

ovm_component

tlm_fifo #(T)

tlm_analysis_fifo #(T)

185

Members

analysis_export
ovm_analysis_imp #(T, tlm_analysis_fifo #(T)) analysis_export

The analysis_export provides the write method to all connected analysis ports and
parent exports:

function void write (T t)

Access via ports bound to this export is the normal mechanism for writing to an analysis
FIFO. See write method on page 157 for more information.

Methods

new
function new (string name, ovm_component parent=null)

This is the standard ovm_component constructor. The name is the local name of this
component. The parent should be left unspecified when this component is instantiated
in statically elaborated constructs and must be specified when this component is a child
of another OVM component.

186

tlm_req_rsp_channel #(REQ,RSP)

The tlm_req_rsp_channel contains a request FIFO of type REQ and a response FIFO of
type RSP. These FIFOs can be of any size. This channel is particularly useful for dealing with
pipelined protocols where the request and response are not tightly coupled.

Summary
class tlm_req_rsp_channel #(type REQ=int, type RSP=int) extends ovm_component;

 function new (string name, ovm_component parent=null,

int request_fifo_size=1, int response_fifo_size=1);

 ovm_put_export #(REQ) put_request_export;

 ovm_get_peek_export #(REQ) get_peek_response_export;

 ovm_put_export #(RSP) put_response_export;

 ovm_get_peek_export #(RSP) get_peek_response_export;

 ovm_master_imp #(REQ, RSP, this_type,...) master_export;

 ovm_slave_imp #(REQ, RSP, this_type,...) slave_export;

 ovm_analysis_port #(REQ) request_ap;

 ovm_analysis_port #(RSP) response_ap;

endclass

File

tlm/tlm_req_rsp.svh

Virtual

No

ovm_object

ovm_report_object

ovm_component

tlm_req_rsp_channel #(REQ,RSP)

187

Parameters
type REQ = int

Type of the request transactions conveyed by this channel.

type RSP = int

Type of the reponse transactions conveyed by this channel.

Members

put_request_export
ovm_put_export #(REQ) put_request_export

The put_export provides both the blocking and non-blocking put interface methods
to the request FIFO:

task put (input T t);

function bit can_put ();

function bit try_put (input T t);

Any put port variant can connect and send transactions to the request FIFO via this
export, provided the transaction types match.

get_peek_response_export
ovm_get_peek_export #(RSP) get_peek_response_export

The get_peek_export provides all the blocking and non-blocking get and peek
interface methods to the response FIFO:

task get (output T t)

function bit can_get ()

function bit try_get (output T t)

task peek (output T t)

function bit can_peek ()

function bit try_peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the response
FIFO via this export, provided the transaction types match.

get_peek_request_export
ovm_get_peek_export #(REQ) get_peek_request_export

The get_peek_export provides all the blocking and non-blocking get and peek
interface methods to the request FIFO:

188

task get (output T t)

function bit can_get ()

function bit try_get (output T t)

task peek (output T t)

function bit can_peek ()

function bit try_peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the request
FIFO via this export, provided the transaction types match.

put_response_export
ovm_put_export #(RSP) put_response_export

The put_export provides both the blocking and non-blocking put interface methods
to the response FIFO:

task put (input T t);

function bit can_put ();

function bit try_put (input T t);

Any put port variant can connect and send transactions to the response FIFO via this
export, provided the transaction types match.

master_export
ovm_master_imp #(REQ, RSP, this_type,...) master_export

Exports a single interface that allows a master to put requests and get or peek
responses. It is a combination of the put_request_export and
get_peek_response_export.

slave_export
ovm_slave_imp #(REQ, RSP, this_type,...) slave_export

Exports a single interface that allows a slave to get or peek requests and to put
responses. It is a combination of the get_peek_request_export and
put_response_export.

request_ap
ovm_analysis_port #(REQ) request_ap

Transactions passed via put or try_put (via any port connected to the
put_request_export) are sent out this port via its write method.

189

function void write (T t)

All connected analysis exports and imps will receive these transactions.

response_ap
ovm_analysis_port #(RSP) response_ap

Transactions passed via put or try_put (via any port connected to the
put_response_export) are sent out this port via its write method.

function void write (T t)

All connected analysis exports and imps will receive these transactions.

Methods

new
function new(string name, ovm_component parent=null,

int request_fifo_size=1,

int response_fifo_size=1)

The name and parent are the standard ovm_component constructor arguments.
The parent must be null if this component is defined within a static component such
as a module, program block, or interface. The last two arguments specify the request and
response FIFO sizes, which have default values of 1.

190

tlm_transport_channel #(REQ,RSP)

A tlm_transport_channel is a tlm_req_rsp_channel that implements the
transport interface. It is useful when modeling a non-pipelined bus at the transaction
level. Because the requests and responses have a tightly coupled one-to-one relationship,
the request and response FIFO sizes are both set to one.

Summary
class tlm_transport_channel #(type REQ=int, type RSP=int)

 extends tlm_req_rsp_channel #(REQ, RSP);

 function new (string name, ovm_component parent=null);

 ovm_transport_imp #(REQ,RSP,tlm_transport_channel #(REQ,RSP)) transport_export;

endclass

File

tlm/tlm_req_rsp.svh

Parameters
type REQ = int

Type of transactions to be passed to/from the request FIFO.

type RSP = int

Type of transactions to be passed to/from the response FIFO.

ovm_object

ovm_report_object

ovm_component

tlm_req_rsp_channel #(REQ,RSP)

tlm_transport_channel #(REQ,RSP)

191

Members

transport_export
ovm_transport_imp#(REQ,RSP,tlm_transport_channel #(REQ,RSP)) transport_export

The put_export provides both the blocking and non-blocking transport interface
methods to the response FIFO:

task transport(REQ request, output RSP response);

function bit nb_transport(REQ request, output RSP response);

Any transport port variant can connect to and send requests and retrieve responses
via this export, provided the transaction types match. Upon return, the response
argument carries the response to the request.

Methods

new
function new(string name, ovm_component parent=null)

The name and parent are the standard ovm_component constructor arguments.
The parent must be null if this component is defined within a statically elaborated
construct such as a module, program block, or interface.

192

Components

Components form the foundation of the OVM. They encapsulate behavior of transactors,
scoreboards, and other objects in a testbench. The ovm_component is the base class from
which all component classes are derived.

Figure 1-5 Predefined Components and Specialized Component Base Classes

ovm_component

ovm_test

ovm_env

ovm_sequencer #(REQ,RSP)

ovm_subscriber #(T)

ovm_agent

ovm_sequencer_base

ovm_driver #(REQ,RSP)

ovm_virtual_sequencer

ovm_scoreboard

ovm_sequencer_param_base #(REQ,RSP)

ovm_push_driver #(REQ,RSP)

ovm_random_stimulus #(T)

193

ovm_test

The ovm_test class is the virtual base class for the user-defined tests.

Summary
virtual class ovm_test extends ovm_component;

 function new (input string name, ovm_component parent);

endclass

File

methodology/ovm_test.svh

Virtual

Yes

Members

None

Methods

new
new (input string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

ovm_object

ovm_report_object

ovm_component

ovm_test

194

Usage

The ovm_test virtual class should be used as the base class for the user-defined tests.
Doing so provides the ability to select which test to execute by using the OVM_TESTNAME
command line argument when used in conjunction with the run_test() task. For example:

> ‘simulator command and switches’ +OVM_TESTNAME=test_bus_retry

The run_test() task should be specified inside an initial block such as:

initial begin

 run_test();

end

This allows multiple tests to be compiled in and then selected for execution from the
command line with random seeding—preventing the need for a recompilation.

If run_test() is used and +OVM_TESTNAME=test_name is specified, then the specified
test_name is created by factory and executed. If the specified test_name cannot be
created by the factory, then a fatal error occurs. If run_test() is used and OVM_TESTNAME
is not specified, then all constructed components will be cycled through their simulation
phases.

Deriving from ovm_test will allow you to distinguish tests from other component types using
its inheritance. Also, tests will automatically inherit any new test-specific features that are
added to ovm_test.

195

ovm_env

The ovm_env class is a top-level container component that provides phasing control for a
hierarchy of components.

Summary
virtual class ovm_env extends ovm_component

function new (string name=env, ovm_component parent=null);

virtual function string get_type_name ();
endclass

File

base/ovm_env.svh

Virtual

Yes

Methods

new
function new (string name="env", ovm_component parent=null)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

ovm_object

ovm_report_object

ovm_component

ovm_env

196

get_type_name
virtual function string get_type_name ()

Returns “ovm_env”. Subclasses must override to return the derived type name.

197

ovm_agent

The ovm_agent virtual class should be used as the base class for the user-defined agents.
Deriving from ovm_agent will allow you to distinguish agents from other component types
also using its inheritance. Also, agents will automatically inherit any new agent-specific
features that are added to ovm_agent.

While an agent’s build function, inherited from ovm_component, can be implemented to
define any agent topology, an agent typically contains three subcomponents: a driver,
sequencer, and monitor. If the agent is active (signified by the is_active control field), the
agent contains all three subcomponents. If the agent is passive, it contains only the monitor.

Summary
virtual class ovm_agent extends ovm_component;

 function new (input string name, ovm_component parent);

endclass

File

methodology/ovm_agent.svh

Methods

new
new (input string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

ovm_object

ovm_report_object

ovm_component

ovm_agent

198

ovm_monitor

The ovm_monitor virtual class should be used as the base class for the user-defined
monitors. Deriving from ovm_monitor allows you to distinguish monitors from other
component types also using its inheritance. Also, monitors will automatically inherit any new
monitor-specific features that are added to ovm_monitor.

Summary
virtual class ovm_monitor extends ovm_component;

 function new (input string name, ovm_component parent);

endclass

File

methodology/ovm_monitor.svh

Virtual

Yes

Methods

new
function new (input string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

ovm_object

ovm_report_object

ovm_component

ovm_monitor

199

ovm_scoreboard

The ovm_scoreboard virtual class should be used as the base class for the user-defined
scoreboards. Deriving from ovm_scoreboard will allow you to distinguish scoreboards from
other component types using its inheritance. Also, scoreboards will automatically inherit any
new scoreboard-specific features that are added to ovm_scoreboard.

Summary
virtual class ovm_scoreboard extends ovm_component;

 function new (input string name, ovm_component parent);

endclass

File

methodology/ovm_scoreboard.svh

Virtual

Yes

Methods

new
function new (input string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

ovm_object

ovm_report_object

ovm_component

ovm_scoreboard

200

ovm_driver #(REQ,RSP)

The ovm_push_driver class provides base driver class with port connectors for
communicating with a sequencer.

Summary
class ovm_driver #(type REQ=ovm_sequence_item, RSP=REQ) extends ovm_component;

 function new (input string name, ovm_component parent);

 ovm_seq_item_pull_port #(REQ, RSP) seq_item_port;

 ovm_analysis_port #(RSP) rsp_port;

endclass

File

methodology/ovm_driver.svh

Virtual

No

Members

seq_item_port
ovm_seq_item_pull_port #(REQ, RSP) seq_item_port

Derived driver classes should use this port to request items from the sequencer, and it
may also use it to put responses.

ovm_object

ovm_report_object

ovm_component

ovm_driver #(REQ,RSP)

201

rsp_port
ovm_analysis_port #(RSP) rsp_port

The rsp_port analysis port allows responses to be sent to the sequencer as another
way to route them to the originating sequence.

Methods

new
new (input string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

Usage

Sequencer to Driver port connections

■ A Pull sequencer has two ports that may be connected to the driver sequencer.

 driver.seq_item_port.connect(sequencer.seq_item_export);

 driver.rsp_port.connect(sequencer.rsp_export);

The rsp_port is only needed if the driver is going to use the rsp_port to write
responses to the analysis export in the sequencer

202

ovm_push_driver #(REQ,RSP)

The ovm_push_driver class provides base driver class TLM port connectorsfor
communicating with a sequencer.

Summary
class ovm_push_driver #(type REQ=ovm_sequence_item,RSP=REQ) extends ovm_component;

 function new (string name, ovm_component parent);

 ovm_blocking_put_imp #(REQ, this_type) req_export;

 ovm_analysis_port #(RSP) rsp_port;

endclass

File

methodology/ovm_push_driver.svh

Virtual

No

Members

req_export
ovm_blocking_put_imp #(REQ, this_type) req_export

This export provides the blocking put method, put, whose default implementation
produces an error. Derived components must override put with an appropriate
implementation (and not call super.put).

ovm_object

ovm_report_object

ovm_component

ovm_push_driver #(REQ,RSP)

203

rsp_port
ovm_analysis_port #(RSP) rsp_port

The rsp_port analysis port allows responses to be sent to the sequencer as another
way to route them to the originating sequence.

Methods

new
new (input string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

Usage

Sequencer to Driver port connections

■ A Push sequencer has two ports that may be connected to the driver:

 sequencer.req_port.connect(driver.req_export);

 driver.rsp_port.connect(sequencer.rsp_export);

The rsp_port is only needed if the driver is going to use the rsp_port to write
responses to the analysis export in the sequencer

204

ovm_sequencer_base

The ovm_sequencer_base class provides the methods used to create streams of
sequence items and other sequences.

Summary
class ovm_sequencer_base extends ovm_component;

function new (string name, ovm_component parent);

task wait_for_grant (ovm_sequence_base sequence_ptr,

 integer item_priority = -1,

 bit lock_request = 0);

task set_arbitration (ovm_sequence_base sequence_ptr,

 integer transaction_id);

virtual function void send_request (ovm_sequence_base sequence_ptr,

 ovm_sequence_item t,

 bit rerandomize = 0);

function bit is_child (ovm_sequence_base parent,

 ovm_sequence_base child);

function bit is_blocked (ovm_sequence_base sequence_ptr);

function bit is_locked (ovm_sequence_base sequence_ptr);

virtual function bit is_grabbed ();

task lock (ovm_sequence_base sequence_ptr);

task grab (ovm_sequence_base sequence_ptr);

function void unlock (ovm_sequence_base sequence_ptr);

function void ungrab (ovm_sequence_base sequence_ptr);

function void stop_sequences ();

virtual

 function ovm_sequence_base has_do_available ();

function bit has_do_available();

function void set_arbitration (SEQ_ARB_TYPE val);

ovm_object

ovm_report_object

ovm_component

ovm_sequencer_base

205

virtual function

 integer user_priority_arbitration (integer avail_sequences[$]);

function void add_sequence (string type_name);

function void remove_sequence (string type_name);

static function bit add_typewide_sequence (string type_name);

static function bit remove_typewide_sequence (string type_name);

function integer get_seq_kind (string type_name);

function ovm_sequence_base get_sequence (integer req_kind);

function integer num_sequences ();

protected string default_sequence;

endclass

Members

default_sequence
protected string default_sequence

This sequencer’s default sequence. It may be configured through the ovm_component’s
set_config_string method using the field name, "default_sequence".

Methods

add_sequence
function void add_sequence (string type_name)

This function allows users to add sequence strings to the sequence library of a given
user sequencer instance. This function must be called after the instance(s) of the user
sequencer types are created.

remove_sequence

function void remove_sequence(string type_name)

This function allows users to remove sequence strings to the sequence library of a given
user sequencer instance. This function must be called after the instance(s) of the user
sequencer types are created.

206

add_typewide_sequence

static function bit add_typewide_sequence(string type_name)

This function is provided to the ovm_sequencer class if the `ovm_sequencer_utils
macro is used. This allows users to add sequence strings to the sequence library of a
given user sequencer type. This static function must be called before the instance(s) of
the user sequencer types are created.

remove_typewide_sequence

static function bit remove_typewide_sequence(string type_name)

This function is provided to the ovm_sequencer class if the `ovm_sequencer_utils
macro is used. This allows users to remove sequence strings to the sequence library of
a given user sequencer type.

current_grabber
virtual function ovm_sequence_base current_grabber()

current_grabber returns a reference to the sequence that currently has a lock or grab on
the sequence. If multiple hierarchical sequences have a lock, it returns the child that is
currently allowed to perform operations on the sequencer.

is_blocked
function bit is_blocked (ovm_sequence_base sequence_ptr)

Returns 1 if the sequence referred to by sequence_ptr is currently locked out of the
sequencer. It will return 0 if the sequence is currently allowed to issue operations.

Note that even when a sequence is not blocked, it is possible for another sequence to
issue a lock before this sequence is able to issue a request or lock.

is_child
function bit is_child (ovm_sequence_base parent, ovm_sequence_base child)

Returns 1 if the child sequence is a child of the parent sequence, 0 otherwise.

is_grabbed
virtual function bit is_grabbed()

207

Returns 1 if any sequence currently has a lock or grab on this sequencer, 0 otherwise.

is_locked
function bit is_locked (ovm_sequence_base sequence_ptr)

Returns 1 if the sequence refered to in the parameter currently has a lock on this
sequencer, 0 otherwise.

Note that even if this sequence has a lock, a child sequence may also have a lock, in
which case the sequence is still blocked from issueing operations on the sequencer

has_do_available
function bit has_do_available ()

Determines if a sequence is ready to supply a transaction. A sequence that obtains a
transaction in pre-do must determine if the upstream object is ready to provide an item

Returns 1 if a sequence is ready to issue an operation. Returns 0 if no unblocked,
relevant sequence is requesting.

lock
task lock (ovm_sequence_base sequence_ptr)

Requests a lock for the sequence specified by sequence_ptr.

A lock request will be arbitrated the same as any other request. A lock is granted after
all earlier requests are completed and no other locks or grabs are blocking this sequence.

The lock call will return when the lock has been granted.

grab
task grab (ovm_sequence_base sequence_ptr)

Requests a lock for the sequence specified by sequence_ptr.

 A grab request is put in front of the arbitration queue. It will be arbitrated before any other
requests. A grab is granted when no other grabs or locks are blocking this sequence.

The grab call will return when the grab has been granted.

ungrab
function ungrab (ovm_sequence_base sequence_ptr)

208

Removes any locks and grabs obtained by the specified sequence_ptr.

unlock
function unlock (ovm_sequence_base sequence_ptr)

Removes any locks and grabs obtained by the specified sequence_ptr.

get_seq_kind
function integer get_seq_kind (string type_name)

Returns an integer seq_kind correlating to the sequence of type type_name in the
sequencer’s sequence library.

get_sequence
function ovm_sequence_base get_sequence (integer seq_kind)

Returns a reference to a sequence specified by the seq_kind integer. The seq_kind
integer may be obtained using the get_seq_kind() method.

num_sequences
function integer num_sequences()

Returns the number of sequences in the sequencer’s sequence library.

send_request
function send_request (ovm_sequence_base sequence_ptr,

 ovm_sequence_item request,

 bit rerandomize = 0)

This function may only be called after a wait_for_grant call. This call will send the
request item to the sequencer, which will forward it to the driver. If the rerandomize
bit is set, the item will be randomized before being sent to the driver.

set_arbitration
function void set_arbitration (SEQ_ARB_TYPE val)

Specify the arbitration mode for the sequencer. the arbitration mode must be one of:

SEQ_ARB_FIFO
All requests are granted in FIFO order

209

SEQ_ARB_WEIGHTED
Requests are granted randomly by weight

SEQ_ARB_RANDOM
Requests are granted randomly

SEQ_ARB_STRICT_FIFO
All requests at the highest priority are granted in fifo order

SEQ_ARB_STRICT_RANDOM
All requests at the highest priority are granted in random order

SEQ_ARB_USER
The user function user_priority_arbitration is called. That function will specify the
next sequence to grant. The default user function specifies FIFO order

stop_sequences
function void stop_sequences()

Tells the sequencer to kill all sequences and child sequences currently operating on the
sequencer, and remove all requests, locks and responses that are currently queued.
This essentially resets the sequencer to an idle state.

user_priority_arbitration
virtual function integer user_priority_arbitration(integer avail_sequences[$])

If the sequencer arbitration mode is set to SEQ_ARB_USER (via the set_arbitration
method), then the sequencer will call this function each time that it needs to arbitrate
among sequences.

Derived sequencers may override this method to perform a custom arbitration policy.
Such an override must return one of the entries from the avail_sequences queue,
which are integer indexes into an internal queue, arb_sequence_q.

The default implementation behaves like SEQ_ARB_FIFO, which returns the entry at
avail_sequences[0].

wait_for_grant
task wait_for_grant (ovm_sequence_base sequence_ptr,

 integer item_priority = -1,

 bit lock_request = 0)

This task issues a request for the specified sequence. If item_priority is not
specified, then the current sequence priority will be used by the arbiter. If a

210

lock_request is made, then the sequencer will issue a lock immediately before
granting the sequence. (Note that the lock may be granted without the sequence being
granted if is_relevant is not asserted).

When this method returns, the sequencer has granted the sequence, and the sequence
must call send_request without inserting any simulation delay other than delta cycles.
The driver is currently waiting for the next item to be sent via the send_request call.

wait_for_item_done
task wait_for_item_done (ovm_sequence_base sequence_ptr,

 integer transaction_id = -1)

A sequence may optionally call wait_for_item_done. This task will block until the driver
calls item_done() or put() on a transaction issued by the specified sequence. If no
transaction_id parameter is specified, then the call will return the next time that the driver
calls item_done() or put(). If a specific transaction_id is specified, then the call will only
return when the driver indicates that it has completed that specific item.

Note that if a specific transaction_id has been specified, and the driver has already
issued an item_done or put for that transaction, then the call will hang waiting for that
specific transaction_id.

211

ovm_sequencer_param_base #(REQ,RSP)

This class provides the base parameterized code used by the ovm_sequencer and
ovm_push_sequencer.

Summary
class ovm_sequencer_param_base #(type REQ=ovm_sequence_item, RSP=REQ)

 extends ovm_sequencer_base;

 function new (string name, ovm_component parent);

 ovm_analysis_export #(RSP) rsp_export;

 function REQ get_current_item ();

 function int get_num_reqs_sent ();

 function int get_num_rsps_received();

 function void set_num_last_reqs (int unsigned max);

 function int unsigned get_num_last_reqs ();

 function REQ last_req (int unsigned n = 0);

 function void set_num_last_rsps (int unsigned max);

 function int unsigned get_num_last_rsps ();

 function RSP last_rsp (int unsigned n = 0);

 task start_default_sequence();

 virtual task execute_item (ovm_sequence_item item);

 virtual function void send_request (ovm_sequence_base sequence_ptr,

 ovm_sequence_item t,

 bit rerandomize = 0);

endclass

Members

ovm_object

ovm_report_object

ovm_component

ovm_sequencer_base

ovm_sequencer_param_base

212

rsp_export
ovm_analysis_export #(RSP) rsp_export

This is the analysis export used by drivers or monitors to send responses to the
sequencer. When a driver wishes to send a response, it may do so through exactly one
of three methods:

seq_item_port.item_done(response)

seq_item_done.put(response)

rsp_port.write(response)

The rsp_port in the driver and/or monitor must be connected to the rsp_export in
this sequencer in order to send responses through the response analysis port.

Methods

new
new (input string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

send_request
function void send_request (ovm_sequence_base sequence_ptr,

 ovm_sequence_item t,

 bit rerandomize = 0)

The send_request function may only be called after a wait_for_grant call. This
call will send the request item, t, to the sequencer pointed to by sequence_ptr. The
sequencer will forward it to the driver. If rerandomize is set, the item will be
randomized before being sent to the driver.

get_current_item
function REQ get_current_item()

Returns the request_item currently being executed by the sequencer. If the sequencer
is not currently executing an item, this method will return null.

The sequencer is executing an item from the time that get_next_item or peek is
called until the time that get or item_done is called.

213

Note that a driver that only calls get() will never show a current item, since the item is
completed at the same time as it is requsted.

last_req
function REQ last_req (int unsigned n = 0)

Returns the last request item by default. If n is not 0, then it will get the n‘th before last
request item. If n is greater than the last request buffer size, the function will return null.

set_num_last_reqs
function void set_num_last_reqs (int unsigned max)

Sets the size of the last_requests buffer. Note that the maximum buffer size is 1024. If
max is greater than 1024, a warning is issued, and the buffer is set to 1024. The default
value is 1.

get_num_last_reqs
function int unsigned get_num_last_reqs()

Returns the size of the last requests buffer, as set by set_num_last_reqs.

get_num_reqs_sent
function int get_num_reqs_sent()

Returns the number of requests that have been sent by this sequencer.

last_rsp
function RSP last_rsp (int unsigned n = 0)

Returns the last response item by default. If n is not 0, then it will get the n‘th before last
response item. If n is greater than the last response buffer size, the function will return
null.

set_num_last_rsps
function void set_num_last_rsps (int unsigned max)

Sets the size of the last_responses buffer. The maximum buffer size is 1024. If max is
greater than 1024, a warning is issued, and the buffer is set to 1024. The default value
is 1.

214

get_num_last_rsps
function int unsigned get_num_last_rsps()

Returns the max size of the last responses buffer, as set by set_num_last_rsps.

get_num_rsps_received
function int get_num_rsps_received()

Returns the number of responses received thus far by this sequencer.

execute_item
task execute_item (ovm_sequence_item item)

This task allows the user to supply an item or sequence to the sequencer and have it be
executed procedurally. The parent sequence for the item or sequence is a temporary
sequence that is automatically created. There is no capability to retrieve responses. The
sequencer will drop responses to items done using this interface.

start_default_sequence
task start_default_sequence()

Called when the run phase begins, this method starts the default sequence, as specified
by the default_sequence member variable.

215

ovm_sequencer #(REQ,RSP)

Summary
class ovm_sequencer #(type REQ=ovm_sequence_item, RSP=REQ)

 extends ovm_sequencer_param_base #(REQ, RSP);

function new (string name, ovm_component parent);

ovm_seq_item_pull_imp #(REQ, RSP,

 ovm_sequencer #(REQ,RSP)) seq_item_export;

int unsigned pound_zero_count;

virtual function void send_request(ovm_sequence_base sequence_ptr,

 ovm_sequence_item t,

 bit rerandomize = 0);

endclass

Members

seq_item_export
ovm_seq_item_pull_imp #(REQ, RSP, ovm_sequencer #(REQ,RSP)) seq_item_export

ovm_object

ovm_report_object

ovm_component

ovm_sequencer_base

ovm_sequencer_param_base #(REQ,RSP)

ovm_sequencer #(REQ,RSP)

216

This export provides access to this sequencer’s implementation of the sequencer
interface, sqr_if_base, which defines the following methods:

 virtual task get_next_item (output REQ request);

 virtual task try_next_item (output REQ request);

 virtual function void item_done (input RSP response=null);

 virtual task wait_for_sequences ();

 virtual function bit has_do_available ();

 virtual task get (output REQ request);

 virtual task peek (output REQ request);

 virtual task put (input RSP response);

See sqr_if_base #(REQ,RSP) on page 174 for information about this interface.

pound_zero_count
int unsigned pound_zero_count;

Methods

new
function new (string name, ovm_component parent);

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

send_request
virtual function send_request (ovm_sequence_base sequence_ptr,

 ovm_sequence_item request,

 bit rerandomize = 0);

Sends the request item to the sequencer pointed to by sequencer_ptr. This
sequencer will then forward it to the driver. If rerandomize is set, the item will be
randomized before being sent to the driver.

The send_request function may only be called after a wait_for_grant call (from
ovm_sequencer_base).

217

ovm_push_sequencer #(REQ,RSP)

Summary
class ovm_push_sequencer #(type REQ=ovm_sequence_item, RSP=REQ

 extends ovm_sequencer_param_base #(REQ, RSP);

 function new (string name, ovm_component parent);

 ovm_blocking_put_port #(REQ) req_port;

 virtual task run();

endclass

Members

req_port
ovm_blocking_put_port #(REQ) req_port

The push sequencer requires access to a blocking put interface. Continual sequence
items, based on the list of available sequences loaded into this sequencer, are sent out
this port.

Methods

new
function new (string name, ovm_component parent);

ovm_object

ovm_report_object

ovm_component

ovm_sequencer_base

ovm_sequencer_param_base #(REQ,RSP)

ovm_push_sequencer #(REQ,RSP)

218

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

run
virtual task run();

The push sequencer continuously selects from its list of available sequences and sends
the next item from the selected sequence out its req_port using
req_port.put(item). Typically, the req_port would be connected to the
req_export on an instance of an ovm_push_driver, which would be responsible for
executing the item.

219

ovm_subscriber #(T)

A subclass of ovm_subscriber can be used to connect to an ovm_analysis_port that
writes transactions of type T.

ovm_subscriber has a single pure virtual method, write(), which is made available to
the outside by way of an analysis_export. This is particularly useful when writing a
coverage object that needs to be attached to a monitor.

Summary
virtual class ovm_subscriber #(type T=int) extends ovm_component;

 function new (string name, ovm_component parent);

 ovm_analysis_imp #(T, ovm_subscriber #(T)) analysis_export;

 pure virtual function void write (T t);

endclass

File

utils/ovm_subscriber.svh

Parameters
type T = int

Specifies the type of transaction to be received.

Members

analysis_export
ovm_analysis_imp #(T, ovm_subscriber #(T)) analysis_export

ovm_object

ovm_report_object

ovm_component

ovm_subscriber #(T)

220

This export provides access to the write method.

Methods

new
function new (string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

write
pure virtual function void write (T t)

A pure virtual method that needs to be defined in a subclass. Access to the method by
outside components should be done via the analysis_export.

221

ovm_random_stimulus #(T)

This is a general purpose uni-directional random stimulus generator. It is a very useful
component in its own right, but can also be used as a template to define other stimulus
generators, or it can be extended to add additional stimulus generation methods to simplify
test writing.

The ovm_random_stimulus class generates streams of trans_type transactions. These
streams may be generated by the randomize() method of trans_type, or the
randomize() method of one of its subclasses, depending on the type of the argument
passed into the generate_stimulus() method. The stream may go indefinitely, until
terminated by a call to stop_stimulus_generation(), or you may specify the maximum
number of transactions to be generated.

By using inheritance, we can add directed initialization or tidy up sequences to the random
stimulus generation.

Summary
class ovm_random_stimulus #(type T=ovm_transaction) extends ovm_component;

function new(string name, ovm_component parent);

ovm_blocking_put_port #(T) blocking_put_port;

virtual task generate_stimulus(trans_type t=null, int max_count=0);

virtual function void stop_stimulus_generation();

endclass

File

base/ovm_random_stimulus.svh

ovm_object

ovm_report_object

ovm_component

ovm_random_stimulus #(T)

222

Parameters
type trans_type=ovm_transaction

Specifies the type of transaction to be generated.

Members

blocking_put_port
ovm_blocking_put_port #(type T=int) blocking_put_port

The port through which transactions come out of the stimulus generator.

Methods

new
function new (string name, ovm_component parent)

Creates and initializes an instance of this class using the normal constructor arguments
for ovm_component: name is the name of the instance, and parent is the handle to
the hierarchical parent, if any.

The constructor displays the string obtained from get_randstate() during
construction. The set_randstate() can then be used to regenerate precisely the
same sequence of transactions for debugging purposes.

generate_stimulus
virtual task generate_stimulus (trans_type t=null, int max_count=0)

The main user-visible method. If t is not specified, then it will generate random
transactions of type trans_type. If t is specified, then it will use the randomize()
method in t to generate transactions—so t must be a subclass of trans_type. The
max_count is the maximum number of transactions to be generated. A value of zero
indicates no maximum—in this case, generate_stimulus() will go on indefinitely
unless stopped by some other process. The transactions are cloned before they are sent
out over the blocking_put_port.

stop_stimulus_generation
virtual function void stop_stimulus_generation ()

Stops the generation of stimulus.

223

Sequences

ovm_sequence_item

The ovm_sequence_item class is the base class for user-defined sequence items and also
the base class for the ovm_sequence.

The ovm_sequence_item class provides the basic functionality for objects, both sequence
items and sequences, to operate in the sequence mechanism.

Summary
class ovm_sequence_item extends ovm_transaction;

function new (string name = "ovm_sequence_item",

 ovm_sequencer_base sequencer = null,

 ovm_sequence_base parent_sequence = null);

function void set_sequence_id (integer id);

function integer get_sequence_id ();

function void set_use_sequence_info (bit value);

function bit get_use_sequence_info ();

function void set_id_info (ovm_sequence_item item);

function void set_sequencer (ovm_sequencer_base sequencer);

function ovm_sequencer_base get_sequencer ();

function void set_parent_sequence (ovm_sequence_base parent);

function ovm_sequence_base get_parent_sequence();

function void set_depth (integer value);

function integer get_depth ();

virtual function bit is_item ();

function string get_root_sequence_name ();

function ovm_sequence_base get_root_sequence();

function string get_sequence_path ();

endclass

ovm_object

ovm_transaction

ovm_sequence_item

224

File

sequences/ovm_sequence_item.svh

Virtual

No

Methods

new
function new (string name = "ovm_sequence_item",

 ovm_sequencer_base sequencer = null,

 ovm_sequence_base parent_sequence = null)

The constructor method for ovm_sequence_item. The sequencer and
parent_sequence may be specified in the constructor, or directly using
ovm_sequence_item methods.

set_sequence_id

get_sequence_id
function void set_sequence_id (integer value)

function integer get_sequence_id ()

These methods allow access to the sequence_item sequence and transaction IDs.
get_transaction_id and set_transaction_id are methods on the
ovm_transaction base_class. These IDs are used to identify sequences to the
sequencer, to route responses back to the sequence that issued a request, and to
uniquely identify transactions.

The sequence_id is assigned automatically by a sequencer when a sequence initiates
communication through any sequencer calls (i.e. `ovm_do_xxx, wait_for_grant).
The sequence_id will remain unique for this sequence until it ends or it is killed. Should
a sequence start again after it has ended, it will be given a new unique sequence_id.

The transaction_id is assigned automatically by the sequence each time a
transaction is sent to the sequencer with the transaction_id in its default (-1) value.
If the user sets the transaction_id to any non-default value, that value will be
maintained.

225

Responses are routed back to this sequences based on sequence_id. The sequence
may use the transaction_id to correlate responses with their requests.

set_use_sequence_info

get_use_sequence_info
function void set_use_sequence_info (bit value)

function bit get_use_sequence_info ()

These methods are used to set and get the status of the use_sequence_info bit.
Use_sequence_info controls whether the sequence information (sequencer,
parent_sequence, sequence_id, etc.) is printed, copied, or recorded. When
use_sequence_info is the default value of 0, then the sequence information is not
used. When use_sequence_info is set to 1, the sequence information will be used in
printing and copying.

set_id_info
function void set_id_info (ovm_sequence_item item);

Copies the sequence_id and transaction_id from the referenced item into the
calling item. This routine should always be used by drivers to initialize responses for
future compatibility.

set_sequencer

get_sequencer
function void set_sequencer (ovm_sequencer_base sequencer)

function ovm_sequencer_base get_sequencer()

These routines set and get the reference to the sequencer to which this
sequence_item communicates.

set_parent_sequence
function void set_parent_sequence (ovm_sequence_base parent)

Sets the parent sequence of this sequence_item. This is used to identify the source
sequence of a sequence_item.

226

get_parent_sequence
function ovm_sequence_base get_parent_sequence()

Returns a reference to the parent sequence of any sequence on which this method was
called. If this is a parent sequence, the method will return null.

get_depth
function integer get_depth()

Returns the depth of a sequence from it's parent. A parent sequence will have a depth
of 1, it's child will have a depth of 2, and it's grandchild will have a depth of 3.

set_depth
function void set_depth (integer value)

The depth of any sequence is calculated automatically. However, the user may use
set_depth to specify the depth of a particular sequence. This method will override the
automatically calculated depth, even if it is incorrect.

is_item
virtual function is_item()

This function may be called on any sequence_item or sequence. It will return 1 for
items and 0 for sequences.

get_root_sequence_name
function string get_root_sequence_name()

Provides the string name of the root sequence (the top-most parent sequence).

get_root_sequence
function ovm_sequence_base get_root_sequence()

Provides a reference to the root sequence (the top-most parent sequence).

get_sequence_path
function string get_sequence_path()

Provides a string of names of each sequence in the full hierarchical path. A "." is used as
the separator between each sequence.

227

ovm_sequence_base

The ovm_sequence_base class provides the interfaces necessary in order to create
streams of sequence items and/or other sequences.

Summary
virtual class ovm_sequence_base extends ovm_sequence_item;

function new (string name = "ovm_sequence",

 ovm_sequencer_base sequencer_ptr = null,

 ovm_sequence_base parent_seq = null);

virtual task start (ovm_sequencer_base sequencer,

 ovm_sequence_base parent_sequence = null,

 integer this_priority = 100,

 bit call_pre_post = 1);

task do_sequence_kind (integer unsigned req_kind);

virtual task pre_body ();

virtual task body ();

virtual task post_body();

virtual task pre_do (bit is_item);

virtual function void mid_do (ovm_sequence_item this_item);

virtual function void post_do (ovm_sequence_item this_item);

virtual function bit is_item ();

function integer num_sequences ();

function integer get_seq_kind (string type_name);

function ovm_sequence_base get_sequence (integer unsigned req_kind);

ovm_object

ovm_transaction

ovm_sequence_item

ovm_sequence_base

228

function void set_priority (integer value);

function integer get_priority ();

virtual task wait_for_relevant ();

virtual function bit is_relevant ();

function bit is_blocked ();

task lock (ovm_sequencer_base sequencer=null);

task grab (ovm_sequencer_base sequencer=null);

function void unlock (ovm_sequencer_base sequencer=null);

function void ungrab (ovm_sequencer_base sequencer=null);

virtual task wait_for_grant (integer item_priority = -1,

 bit lock_request = 0);

virtual function void send_request (ovm_sequence_item request,

 bit rerandomize = 0);

virtual task wait_for_item_done (integer transaction_id = -1);

virtual function void set_sequencer (ovm_sequencer_base sequencer);

virtual function ovm_sequencer_base get_sequencer();

function void use_response_handler(bit enable);

function bit get_use_response_handler();

virtual function void response_handler(ovm_sequence_item response);

function void kill();

function ovm_sequence_state_enum get_sequence_state();

task wait_for_sequence_state(ovm_sequence_state_enum state);

endclass

File

sequences/ovm_sequence_base.svh

Virtual

Yes

229

Members

seq_kind
integer unsigned seq_kind

Used as an identifier in constraints for a specific sequence type.

Methods

new
 function new (string name = "ovm_sequence",

 ovm_sequencer_base sequencer_ptr = null,

 ovm_sequence_base parent_seq = null)

The constructor for the sequence.

Although generally set in the start method, sequencer_ptr, if set, specifies the
default sequencer at initialization time.

Although generally set in the start method, parent_seq, if set, specifies this
sequence’s parent sequence at initialization.

start
virtual task start (ovm_sequencer_base sequencer,

 ovm_sequence_base parent_sequence = null,

 integer this_priority = 100,

 bit call_pre_post = 1)

The start task is called to begin execution of a sequence.

If parent_sequence is null, then the sequence is a parent, otherwise it is a child of
the specified parent.

By default, the priority of a sequence is 100. A different priority may be specified by
this_priority. Higher numbers indicate higher priority.

If call_pre_post is set to 1, then the pre_body and post_body tasks will be called
before and after the sequence body is called.

get_sequence_state
function sequence_state_enum get_sequence_state()

230

 Returns the sequence state as an enumerated value.

wait_for_sequence_state
task wait_for_sequence_state(ovm_sequence_state_enum state)

This method will wait until the sequence reaches the state specified by the state
argument.

kill
function kill()

This function will kill the sequence, and cause all current locks and requests in the
sequence's default sequencer to be removed.

Note: If a sequence has issued locks, grabs, or requests on sequences other than the
default sequence, then care must be taken to unregister the sequence with the other
sequencer using the sequencer unregister_sequence() method.

pre_body
virtual task pre_body()

This task is a user-definable callback task that is called before the execution of the body,
unless the sequence is started with call_pre_post = 0.. This method should not be
called by the user.

post_body
virtual task post_body()

This task is a user-definable callback task that is called after the execution of the body,
unless the sequence is started with call_pre_post = 0. This method should not be
called by the user.

pre_do
virtual task pre_do (bit is_item)

This task is a user-definable callback task that is called after the sequence has issued a
wait_for_grant() call and after the sequencer has selected this sequence, and
before the item is randomized. This method should not be called by the user.

Although pre_do is a task, consuming simulation cycles may result in unexpected
behavior on the driver.

231

body
virtual task body()

This is the user-defined task where the main sequence code resides. This method
should not be called directly by the user.

mid_do
virtual function mid_do (ovm_sequence_item this_item)

This function is a user-definable callback function that is called after the sequence item
has been randomized, and just before the item is sent to the driver. This mehod should
not be called by the user.

post_do
virtual function void post_do (ovm_sequence_item this_item)

This function is a user-definable callback function that is called after the driver has
indicated that it has completed the item, using either this item_done or put methods.
This method should not be called by the user.

is_item
virtual function is_item()

This function may be called on any sequence_item or sequence object. It will return
1 on items and 0 on sequences.

num_sequences
function integer num_sequences()

This function returns the number of sequences in the sequencer's sequence library.

get_seq_kind
function integer get_seq_kind (string type_name);

This function returns an integer representing the sequence kind that has been registerd
with the sequencer. The seq_kind integer may be used with the get_sequence or
do_sequence_kind methods.

get_sequence
function ovm_sequence_base get_sequence (integer req_kind)

232

This function returns a reference to a sequence specified by req_kind, which can be
obtained using the get_seq_kind method.

do_sequence_kind
task do_sequence_kind (integer req_kind)

This task will start a sequence of kind specified by req_kind, which can be obtained
using the get_seq_kind method.

set_priority
function set_priority (integer value)

The priority of a sequence may be changed at any point in time. When the priority of a
sequence is changed, the new priority will be used by the sequencer the next time that
it arbitrates between sequences.

The default priority value for a sequence is 100. Higher values result in higher priorities.

get_priority
function integer get_priority()

This function returns the current priority of a the sequence.

wait_for_relevant
virtual task wait_for_relevant()

This method is called by the sequencer when all available sequences are not relevant.
When wait_for_relevant returns the sequencer attempt to re-arbitrate.

Returning from this call does not guarantee a sequence is relevant, although that would
be the ideal. The method provide some delay to prevent an infinite loop.

If a sequence defines is_relevant so that it is not always relevant (by default, a
sequence is always relevant), then the sequence must also supply a
wait_for_relevant method.

is_relevant
function function bit is_relevant()

The default is_relevant implementation returns 1, indicating that the sequence is
always relevant.

233

Users may choose to override with their own virtual function to indicate to the sequencer
that the sequence is not currently relevant after a request has been made.

When the sequencer arbitrates, it will call is_relevant on each requesting, unblocked
sequence to see if it is relevant. If a 0 is returned, then the sequence will not be chosen.

If all requesting sequences are not relevant, then the sequencer will call
wait_for_relevant on all sequences and re-arbitrate upon its return.

Any sequence that implements is_relevant must also implement
wait_for_relevant so that the sequencer has a way to wait for a sequence to
become relevant.

is_blocked
function bit is_blocked()

Returns a bit indicating whether this sequence is currently prevented from running due
to another lock or grab. A 1 is returned if the sequence is currently blocked. A 0 is
returned if no lock or grab prevents this sequence from executing. Note that even if a
sequence is not blocked, it is possible for another sequence to issue a lock or grab before
this sequence can issue a request.

lock
task lock (ovm_sequencer_base sequencer = null)

Requests a lock on the specified sequencer. If sequencer is null, the lock will be
requested on the current default sequencer.

A lock request will be arbitrated the same as any other request. A lock is granted after
all earlier requests are completed and no other locks or grabs are blocking this sequence.

The lock call will return when the lock has been granted.

grab
task grab (ovm_sequencer_base sequencer = null)

Requests a lock on the specified sequencer. If no parameter is supplied, the lock will
be requested on the current default sequencer.

A grab equest is put in front of the arbitration queue. It will be arbitrated before any other
requests. A grab is granted when no other grabs or locks are blocking this sequence.

The grab call will return when the grab has been granted.

234

unlock
function unlock (ovm_sequencer_base sequencer = null)

Removes any locks or grabs obtained by this sequence on the specified sequencer.
If sequencer is null, then the unlock will be done on the current default sequencer.

ungrab
function ungrab (ovm_sequencer_base sequencer = null)

Removes any locks or grabs obtained by this sequence on the specified sequencer.
If sequencer is null, then the unlock will be done on the current default sequencer.

wait_for_grant
task wait_for_grant (integer item_priority = -1, bit lock_request = 0)

This task issues a request to the current sequencer. If item_priority is not specified,
then the current sequence priority will be used by the arbiter. If a lock_request is
made, then the sequencer will issue a lock immediately before granting the sequence.
(Note that the lock may be granted without the sequence being granted if is_relevant
is not asserted).

When this method returns, the sequencer has granted the sequence, and the sequence
must call send_request without inserting any simulation delay other than delta cycles.
The driver is currently waiting for the next item to be sent via the send_request call.

wait_for_item_done
task wait_for_item_done (integer transaction_id = -1)

A sequence may optionally call wait_for_item_done. This task will block until the
driver calls item_done or put. If no transaction_id parameter is specified, then
the call will return the next time that the driver calls item_done or put. If a specific
transaction_id is specified, then the call will return when the driver indicates
completion of that specific item.

Note that if a specific transaction_id has been specified, and the driver has already
issued an item_done or put for that transaction, then the call will hang, having missed
the earlier notification.

send_request
function send_request (ovm_sequence_item request, bit rerandomize = 0)

235

The send_request function may only be called after a wait_for_grant call. This
call will send the request item to the sequencer, which will forward it to the driver. If the
rerandomize bit is set, the item will be randomized before being sent to the driver.

set_sequencer
function set_sequencer (ovm_sequencer_base sequencer)

Sets the default sequencer for the sequence to sequencer. It will take effect
immediately, so it should not be called while the sequence is actively communicating with
the sequencer.

get_sequencer
function ovm_sequencer_base get_sequencer()

Returns a reference to the current default sequencer of the sequence.

use_response_handler
function void use_response_handler (bit enable)

When called with enable set to 1, responses will be sent to the response handler.
Otherwise, responses must be retrieved using get_response.

By default, responses from the driver are retrieved in the sequence by calling
get_response.

 An alternative method is for the sequencer to call the response_handler function with
each response.

get_use_response_handler
function bit get_use_response_handler()

Returns the state of the use_response_handler bit.

response_handler
virtual function void response_handler (ovm_sequence_item response)

When the use_reponse_handler bit is set to 1, this virtual task is called by the
sequencer for each response that arrives for this sequence.

236

ovm_sequence #(REQ,RSP)

The ovm_sequence class provides the interfaces necessary in order to create streams of
sequence items and/or other sequences.

Summary
virtual class ovm_sequence #(type REQ = ovm_sequence_item,

 type RSP = REQ) extends ovm_sequence_base;

 function new (string name = "ovm_sequence",

 ovm_sequencer_base sequencer_ptr = null,

 ovm_sequence_base parent_seq = null);

 function void send_request (ovm_sequence_item request

 bit rerandomize = 0);

 task get_response (output RSP response,

 input integer transaction_id = -1);

 function REQ get_current_item();

 virtual function void set_sequencer (ovm_sequencer_base sequencer);

 function void set_response_queue_error_report_disabled(bit value);

 function bit get_response_queue_error_report_disabled();

 function void set_response_queue_depth(integer value);

 function integer get_response_queue_depth();

endclass

File

sequences/ovm_sequence.svh

ovm_object

ovm_transaction

ovm_sequence_item

ovm_sequence #(REQ,RSP)

ovm_sequence_base

237

Virtual

Yes

Members

req
REQ req

rsp
RSP rsp

Methods

new
function new (string name = "ovm_sequence",

 ovm_sequencer_base sequencer_ptr = null,

 ovm_sequence_base parent_seq = null)

The constructor for the sequence.

Although generally set in the start method, sequencer_ptr, if set, specifies the
default sequencer at initialization time.

Although generally set in the start method, parent_seq, if set, specifies this
sequence’s parent sequence at initialization.

send_request
function send_request (ovm_sequence_item request, bit rerandomize = 0)

The send_request function may only be called after a wait_for_grant call. This
call will send the request item to the sequencer, which will forward it to the driver. If
the rerandomize bit is set, the item will be randomized before being sent to the driver.

get_response
task get_response (output RSP response, input integer transaction_id = -1)

By default, sequences must retrieve responses by calling get_response. If no
transaction_id is specified, this task will return the next response sent to this

238

sequence. If no response is available in the response queue, the method will block until
a response is recieved.

If a transaction_id parameter is specified, the task will block until a response with
that transaction_id is received in the response queue.

The default size of the response queue is 8. The get_response method must be called
soon enough to avoid an overflow of the response queue to prevent responses from
being dropped.

If a response is dropped in the response queue, an error will be reported unless the error
reporting is disabled via set_response_queue_error_report_disabled.

set_sequencer
function set_sequencer (ovm_sequencer_base sequencer)

Sets the default sequencer for the sequence to sequencer. It will take effect
immediately, so it should not be called while the sequence is actively communicating with
the sequencer.

set_response_queue_error_report_disabled
 function void set_response_queue_error_report_disabled (bit value)

By default, if the response_queue overflows, an error is reported. The response_queue
will overflow if more responses are sent to this sequence from the driver than
get_response calls are made. Setting value to 0 disables these errors, while setting
it to 1 enables them.

get_response_queue_error_report_disabled
function bit get_response_queue_error_report_disabled()

When this bit is 0 (default value), error reports are generated when the response queue
overflows. When this bit is 1, no such error reports are generated.

set_response_queue_depth

get_response_queue_depth
function void set_response_queue_depth (integer value)

function integer get_response_queue_depth ()

The default maximum depth of the response queue is 8. These method is used to
examine or change the maximum depth of the response queue.

239

Setting the response_queue_depth to -1 indicates an arbitrarily deep response queue.
No checking is done.

get_current_item
function REQ get_current_item()

Returns the request item currently being executed by the sequencer. If the sequencer is
not currently executing an item, this method will return null.

The sequencer is executing an item from the time that get_next_item or peek is
called until the time that get or item_done is called.

Note that a driver that only calls get will never show a current item, since the item is
completed at the same time as it is requested.

240

ovm_random_sequence

The ovm_random_sequence class is a built-in sequence that is preloaded into every
sequencer’s and virtual sequencer’s sequence library.

This sequence is registered in the sequence library as ovm_random_sequence. This
sequence randomly selects and executes a sequence from the sequencer’s sequence library,
excluding ovm_random_sequence itself, and ovm_exhaustive_sequence.

The number of selections and executions is determined by the count property of the
sequencer (or virtual sequencer) on which ovm_random_sequence is operating. See
ovm_sequencer_base on page 204 for more information.

Summary
class ovm_random_sequence extends ovm_sequence #(ovm_sequence_item);

function new (input string name="ovm_random_sequence",

 ovm_sequencer_base sequencer = null,

 ovm_sequence parent_seq = null);

endclass

File

sequences/ovm_sequence_builtin.svh

ovm_object

ovm_transaction

ovm_sequence_item

ovm_sequence #(REQ,RSP)

ovm_sequence_base

ovm_random_sequence

241

Virtual

No

Members

None

Methods

None

242

ovm_exhaustive_sequence

The ovm_exhaustive_sequence class is a built-in sequence that is preloaded into every
sequencer’s and virtual sequencer’s sequence library.

This sequence is registered in the sequence library as ovm_exhaustive_sequence. This
sequence randomly selects and executes each sequence from the sequencer’s sequence
library once, excluding ovm_exhaustive_sequence itself, and ovm_random_sequence.

Summary
class ovm_exhaustive_sequence extends ovm_sequence #(ovm_sequence_item);

function new (input string name="ovm_exhaustive_sequence",
 ovm_sequencer_base sequencer = null,
 ovm_sequence parent_seq = null);

endclass

File

sequences/ovm_sequence_builtin.svh

Virtual

No

ovm_object

ovm_transaction

ovm_sequence_item

ovm_sequence_base

ovm_exhaustive_sequence

ovm_sequence #(REQ,RSP)

243

Members

None

Methods

None

244

ovm_simple_sequence

The ovm_simple_sequence class is a built-in sequence that is preloaded into every
sequencer’s (but not virtual sequencer’s) sequence library.

This sequence is registered in the sequence library as ovm_simple_sequence. This
sequence simply executes a single sequence item.

The item parameterization of the sequencer that the ovm_simple_sequence is executed
on defines the actual type of the item executed. See ovm_sequencer #(REQ,RSP) on
page 215 for more information.

Summary
class ovm_simple_sequence extends ovm_sequence #(ovm_sequence_item);

function new (input string name="ovm_simple_sequence",
 ovm_sequencer_base sequencer = null,
 ovm_sequence parent_seq = null);

endclass

File

sequences/ovm_sequence_builtin.svh

Virtual

No

ovm_object

ovm_transaction

ovm_sequence_item

ovm_sequence_base

ovm_simple_sequence

ovm_sequence #(REQ,RSP)

245

Members

None

Methods

None

246

Comparators

A common function of testbenches is to compare streams of transactions for equivalence. For
example, a testbench may compare a stream of transactions from a DUT with expected
results. The OVM library provides a base class called ovm_in_order_comparator and
two derived classes, which are ovm_in_order_built_in_comparator for comparing
streams of built-in types and ovm_in_order_class_comparator for comparing streams
of class objects. The ovm_algorithmic_comparator also compares two streams of
transactions; however, the transaction streams might be of different type objects. This device
will use a user-written transformation function to convert one type to another before
performing a comparison.

Figure 1-6 UML Diagram for OVM Comparator Classes

ovm_component

ovm_algorithmic_comparator #(BEFORE,AFTER,TRANSFORMER)

ovm_in_order_comparator #(T,comp,convert,pair_type)

ovm_in_order_built_in_comparator #(T) ovm_in_order_class_comparator #(T)

247

ovm_in_order_comparator #(T,comp,convert,pair_type)

Compares two streams of transactions. These transactions may either be classes or built-in
types. To be successfully compared, the two streams of data must be in the same order. Apart
from that, there are no assumptions made about the relative timing of the two streams of data.

Summary
class ovm_in_order_comparator #(type T=int,

 comp=ovm_built_in_comp #(T),

convert=ovm_built_in_converter #(T),

 pair_type=ovm_built_in_pair #(T)) extends ovm_component;

 function new (string name, ovm_component parent);

 ovm_analysis_export #(T) before_export;

 ovm_analysis_export #(T) after_export;

 ovm_analysis_port #(pair_type) pair_ap;

 function void flush ();

 task run ();

endclass

File

methodology/ovm_in_order_comparator.svh

Parameters
type T = int

Specifies the type of transactions to be compared.

type comp = ovm_built_in_comp #(T)

The type of the comparator to be used to compare the two transaction streams.

ovm_object

ovm_report_object

ovm_component

ovm_in_order_comparator

248

type convert = ovm_built_in_converter #(T)

A policy class to allow convert2string() to be called on the transactions being
compared. If T is an extension of ovm_transaction, then it uses
T::convert2string(). If T is a built-in type, then the policy provides a
convert2string() method for the comparator to call.

type pair_type = ovm_built_in_pair #(T)

A policy class to allow pairs of transactions to be handled as a single
ovm_transaction type.

Members

before_export
ovm_analysis_export #(T) before_export

The export to which one stream of data is written.

after_export
ovm_analysis_export #(T) after_export

The export to which the other stream of data is written.

pair_ap
ovm_analysis_port #(pair_type) pair_ap

The comparator sends out pairs of transactions across this analysis port. Both matched
and unmatched pairs are published.

Methods

new
function new(string name, ovm_component parent)

The normal ovm_component constructor.

flush
function void flush()

249

This method sets m_matches and m_mismatches back to zero. The
tlm_fifo::flush takes care of flushing the FIFOs.

run
task run()

Takes pairs of before and after transactions and compares them. Status information
is updated according to the results of the comparison and pairs are published using the
analysis port.

250

ovm_in_order_built_in_comparator #(T)

A subclass of ovm_in_order_comparator that is used to compare two streams of built-in
types.

Summary
class ovm_in_order_built_in_comparator #(type T=int) extends

ovm_in_order_comparator #(T);

 function new (string name,ovm_component parent);

endclass

File

methodology/ovm_in_order_comparator.svh

Parameters
type T = int

Specifies the type of transactions to be compared.

Methods

new
function new(string name,ovm_component parent)

This is the normal ovm_component constructor.

ovm_object

ovm_report_object

ovm_component

ovm_in_order_built_in_comparator #(T)

ovm_in_order_comparator #(...)

251

ovm_in_order_class_comparator #(T)

A subclass of ovm_in_order_comparator that is used to compare two streams of built-in
types.

Summary
class ovm_in_order_built_in_comparator #(type T=int) extends

ovm_in_order_comparator #(T);

 function new(string name,ovm_component parent);

endclass

File

methodology/ovm_in_order_comparator.svh

Parameters
type T = int

Specifies the type of transactions to be compared.

Methods

new
function new(string name,ovm_component parent)

This is the normal ovm_component constructor.

ovm_object

ovm_report_object

ovm_component

ovm_in_order_class_comparator #(T)

ovm_in_order_comparator #(...)

252

ovm_algorithmic_comparator #(BEFORE,AFTER,TRANSFORMER)

The algorithmic comparator is a wrapper around ovm_in_order_class_comparator.
Like the in-order comparator, the algorithmic comparator compares two streams of
transactions, the “before” stream and the “after” stream. It is often the case when two streams
of transactions need to be compared that the two streams are in different forms. That is, the
type of the before transaction stream is different than the type of the after transaction stream.

The ovm_algorithmic_comparator provides a transformer that transforms before
transactions into after transactions. The transformer is supplied to the algorithmic comparator
as a policy class via the class parameter TRANSFORMER. The transformer policy must
provide a transform() method with the following prototype:

AFTER transform (BEFORE b);

Summary
class ovm_algorithmic_comparator #(type BEFORE=int,

type AFTER=int,

type TRANSFORMER=int_transform)

extends ovm_component;

function new(TRANSFORMER transformer, string name, ovm_component parent);

ovm_analysis_export #(AFTER) after_export;

ovm_analysis_imp #(BEFORE, this_type) before_export;

endclass

File

methodology/ovm_algorithmic_comparator.svh

ovm_object

ovm_report_object

ovm_component

ovm_algorithmic_comparator

253

Virtual

no

Parameters
type AFTER = int

The type of the transaction against which the transformed BEFORE transactions will be
compared.

type BEFORE = int

The type of incoming transaction to be transformed prior to comparing against the AFTER
transactions.

type TRANSFORMER = int_transform

The type of the class that contains the transform() method.

Members
typedef ovm_algorithmic_comparator #(BEFORE, AFTER, TRANSFORMER) this_type

after_export
ovm_analysis_export #(AFTER) after_export

Provides a write (AFTER t) method so that publishers (monitors) can send in an
ordered stream of transactions against which the transformed BEFORE transactions will
be compared.

before_export
ovm_analysis_imp #(BEFORE, this_type) before_export

Provides a write (BEFORE t) method so that publishers (monitors) can send in an
ordered stream of transactions to be transformed and compared to the AFTER
transactions.

Methods

new
function new(TRANSFORMER transformer, string name, ovm_component parent)

254

The constructor takes a handle to an externally constructed transformer, a name,
and a parent. The last two arguments are the normal arguments for an
ovm_component constructor.

We create an instance of the transformer (rather than making it a genuine policy class
with a static transform method) because we might need to do reset and configuration on
the transformer itself.

write
function void write(BEFORE b)

This method handles incoming BEFORE transactions. It is usually accessed via the
before_export, and it transforms the BEFORE transaction into an AFTER transaction
before passing it to the in_order_class_comparator.

255

OVM Macros

OVM provides a number of macros to make common code easier to write. It is never
necessary to use the macros, but in many cases the macros can save a substantial amount
of user written code.

The OVM macros include:

■ Utility Macros

■ Sequence Macros

■ Sequencer Macros

■ Field Macros

■ Array Printing Macros

Utility Macros

The utility macros provide overrides for the create method, which is needed for cloning, and
the get_type_name method, which is needed for a number of debugging features. They
also register the type with the ovm_factory, and they implement the get_type method,
which eases usage of the factory’s type-based methods.

Below is an example usage of the utility macros with the field macros. By using the macros,
you do not have to implement any of the data methods to get all of the capabilities of an
ovm_object.

class mydata extends ovm_object;

string str;

mydata subdata;

int field;

myenum e1;

int queue[$];

`ovm_object_utils_begin(mydata) //requires ctor with default args

`ovm_field_string(str, OVM_DEFAULT)

`ovm_field_object(subdata, OVM_DEFAULT)

`ovm_field_int(field, OVM_DEC) //use decimal radix

`ovm_field_enum(e1, OVM_DEFAULT)

`ovm_field_queue_int(queue, OVM_DEFAULT)

`ovm_object_utils_end

endclass

256

`ovm_object_utils

`ovm_object_param_utils

`ovm_object_utils_begin

`ovm_object_param_utils_begin

`ovm_object_utils_end
// for simple objects with no field macros

`ovm_object_utils(TYPE)

// for simple objects with field macros

`ovm_object_utils_begin(TYPE)

 // ‘ovm_field_* macro invocations here

`ovm_object_utils_end

// for parameterized objects with no field macros

‘ovm_object_param_utils(TYPE)s

// for parameterized objects, with field macros

‘ovm_object_param_utils_begin(TYPE)

 // ‘ovm_field_* macro invocations here

‘ovm_object_utils_end

ovm_object-based class declarations may contain one of the above forms of utility
macros.

Simple (non-parameterized) objects use the ovm_object_utils* versions, which do
the following:

❑ Implements get_type_name, which returns TYPE as a string

❑ Implements create, which allocates an object of type TYPE by calling its
constructor with no arguments. TYPE’s constructor, if defined, must have default
values on all it arguments.

❑ Registers the TYPE with the factory, using the string TYPE as the factory lookup
string for the type.

Parameterized classes must use the ovm_object_param_utils* versions. They
differ from `ovm_object_utils only in that they do not supply a type name when
registering the object with the factory. As such, name-based lookup with the factory for
parameterized classes is not possible.

257

The macros with _begin suffixes are the same as the non-suffixed versions except that
they also start a block in which `ovm_field_* macros can be placed. The block must
be terminated by `ovm_object_utils_end.

Objects deriving from ovm_sequence must use the `ovm_sequence_* macros
instead of these macros. See `ovm_sequence_utils on page 259 for details.

`ovm_component_utils

`ovm_component_param_utils

`ovm_component_utils_begin

`ovm_component_param_utils_begin

`ovm_component_utils_end
// for simple components with no field macros

`ovm_component_utils(TYPE)

// for simple components with field macros

`ovm_component_utils_begin(TYPE)

 // ‘ovm_field_* macro invocations here

`ovm_component_utils_end

// for parameterized components with no field macros

‘ovm_component_param_utils(TYPE)

// for parameterized components with field macros

`ovm_component_param_utils_begin(TYPE)

 // ‘ovm_field_* macro invocations here

`ovm_component_utils_end

ovm_component-based class declarations may contain one of the above forms of utility
macros.

Simple (non-parameterized) components must use the ovm_components_utils*
versions, which do the following:

❑ Implements get_type_name, which returns TYPE as a string.

258

❑ Implements create, which allocates a component of type TYPE using a two
argument constructor. TYPE’s constructor must have a name and a parent
argument.

❑ Registers the TYPE with the factory, using the string TYPE as the factory lookup
string for the type.

Parameterized classes must use the ovm_object_param_utils* versions. They
differ from `ovm_object_utils only in that they do not supply a type name when
registering the object with the factory. As such, name-based lookup with the factory for
parameterized classes is not possible.

The macros with _begin suffixes are the same as the non-suffixed versions except that
they also start a block in which `ovm_field_* macros can be placed. The block must
be terminated by `ovm_component_utils_end.

Components deriving from ovm_sequencer must use the `ovm_sequencer_*
macros instead of these macros. See `ovm_sequencer_utils on page 262 for details.

`ovm_field_utils_begin

`ovm_field_utils_end
`ovm_field_utils_begin(TYPE)

 // ‘ovm_field_* macro invocations here

`ovm_field_utils_end

These macros form a block in which `ovm_field_* macros can be placed.

These macros do NOT perform factory registration, implement get_type_name, nor
implement the create method. Use this form when you need custom implementations
of these two methods, or when you are setting up field macros for an abstract class (i.e.
virtual class).

Sequence Macros

`ovm_register_sequence
`ovm_register_sequence(TYPE_NAME, SQR_TYPE_NAME)

This macro registers the sequence of type TYPE_NAME with the sequence library of the
given sequencer type, SQR_TYPE_NAME.

259

`ovm_sequence_utils

`ovm_sequence_param_utils

`ovm_sequence_utils_begin

`ovm_sequence_param_utils_begin

`ovm_sequence_utils_end
// for simple sequences, no field macros

`ovm_sequence_utils(TYPE_NAME,SQR_TYPE_NAME)

// for simple sequences, with field macros

`ovm_sequence_utils_begin(TYPE_NAME,SQR_TYPE_NAME)

 // ‘ovm_field_* macro invocations here

‘ovm_sequence_utils_end

// for parameterized sequences, no field macros

`ovm_sequence_param_utils(TYPE_NAME,SQR_TYPE_NAME)

// for parameterized sequences, with field macros

`ovm_sequence_param_utils_begin(TYPE_NAME,SQR_TYPE_NAME)

 // ‘ovm_field_* macro invocations here

‘ovm_sequence_utils_end

One of the above four macro forms can be used in ovm_sequence-based class
declarations.

The sequence-specific macros perform the same function as the set
of`ovm_object_*_utils macros except that they also register the sequence’s type,
TYPE_NAME, with the given sequencer type, SQR_TYPE_NAME, and define the
p_sequencer variable and m_set_p_sequencer method.

Use `ovm_sequence_utils[_begin] for non-parameterized classes and
`ovm_sequence_param_utils[_begin] for parameterized classes.

Sequence Action Macros

`ovm_do
`ovm_do(item_or_sequence)

260

The ‘ovm_do macro initiates activity by creating a new item or sequence of the type
passed in, randomizing it, and then executing it. In the case of a sequence a
sub-sequence is spawned. In the case of an item, the item is sent to the driver through
the associated sequencer.

`ovm_do_pri
`ovm_do_pri(item_or_sequence, prioirity)

This is the same as ̀ ovm_do except that the sequene item or sequence is executed with
the priority specified in the argument

`ovm_do_with
`ovm_do_with(item_or_sequence, constraint_block)

This is the same as ̀ ovm_do except that the given constraint block is applied to the item
or sequence in a randomize with statement before execution.

`ovm_do_pri_with
`ovm_do_pri_with(item_or_sequence, prioirity, constraint_block)

This is the same as `ovm_do_pri except that the given constraint block is applied to
the item or sequence in a randomize with statement before execution.

 `ovm_create
`ovm_create(item_or_sequence)

This action creates the item or sequence using the factory. It intentionally does zero
processing. After this action completes, the user can manually set values, manipulate
rand_mode and constraint_mode, etc.

`ovm_send
`ovm_send(item_or_sequence)

This macro processes the item or sequence that has been created using ̀ ovm_create.
The processing is done without randomization. Essentially, an `ovm_do without the
create or randomization.

`ovm_send_pri
`ovm_send_pri(item_or_sequence, prioirity)

261

This is the same as `ovm_send except that the sequene item or sequence is executed
with the priority specified in the argument

`ovm_rand_send
`ovm_rand_send(item_or_sequence)

This macro processes the item or sequence that has been created using ̀ ovm_create.
The processing is done with randomization. Essentially, an `ovm_do without the create.

`ovm_rand_send_pri
`ovm_rand_send_pri(item_or_sequence, prioirity)

This is the same as `ovm_rand_send except that the sequene item or sequence is
executed with the priority specified in the argument

`ovm_rand_send_with
`ovm_rand_send_with(item_or_sequence, constraint_block)

This is the same as `ovm_rand_send except that the given constraint block is applied
to the item or sequence in a randomize with statement before execution.

`ovm_rand_send_pri_with
`ovm_rand_send_pri_with(item_or_sequence, prioirity, constraint_block)

This is the same as `ovm_rand_send_pri except that the given constraint block is
applied to the item or sequence in a randomize with statement before execution.

`ovm_create_on
`ovm_create_on(item_or_sequence, seqr_ref)

This is the same as `ovm_create except that it also sets the parent sequence to the
sequence in which the macro is invoked, and it sets the sequencer to the specified
seqr_ref argument.

`ovm_do_on
`ovm_do_on(item_or_sequence, seqr_ref)

This is the same as `ovm_do except that it also sets the parent sequence to the
sequence in which the macro is invoked, and it sets the sequencer to the specified
seqr_ref argument.

262

`ovm_do_on_pri
`ovm_do_on_pri(item_or_sequence, seqr_ref, priority)

This is the same as `ovm_do_pri except that it also sets the parent sequence to the
sequence in which the macro is invoked, and it sets the sequencer to the specified
seqr_ref argument.

`ovm_do_on_pri_with
`ovm_do_on_pri_with(item_or_sequence,seqr_ref,priority,constraint_block)

This is the same as `ovm_do_pri_with except that it also sets the parent sequence
to the sequence in which the macro is invoked, and it sets the sequencer to the specified
seqr_ref argument.

Sequencer Macros

`ovm_sequencer_utils

`ovm_sequencer_param_utils

`ovm_sequencer_utils_begin

`ovm_sequencer_param_utils_begin

`ovm_sequencer_utils_end
// for simple sequencers, no field macros

`ovm_sequencer_utils(SQR_TYPE_NAME)

// for simple sequencers, with field macros

`ovm_sequencer_utils_begin(SQR_TYPE_NAME)

 // ‘ovm_field_* macros here

‘ovm_sequencer_utils_end

// for parameterized sequencers, no field macros

`ovm_sequencer_param_utils(SQR_TYPE_NAME)

// for parameterized sequencers, with field macros

`ovm_sequencer_param_utils_begin(SQR_TYPE_NAME)

 // ‘ovm_field_* macros here

‘ovm_sequencer_utils_end

263

One of the above four macro forms can be used in ovm_sequencer-based class
declarations.

The sequencer-specific macros perform the same function as the set of
`ovm_componenent_*utils macros except that they also declare the plumbing
necessary for creating the sequencer’s sequence library. This includes:

1. Declaring the type-based static queue of strings registered on the sequencer type.

2. Declaring the static function to add strings to item #1 above.

3. Declaring the static function to remove strings to item #1 above.

4. Declaring the function to populate the instance specific sequence library for a
sequencer.

Use `ovm_sequencer_utils[_begin] for non-parameterized classes and
`ovm_sequencer_param_utils[_begin] for parameterized classes.

`ovm_update_sequence_lib
`ovm_update_sequence_lib

This macro populates the instance-specific sequence library for a sequencer. It should
be invoked inside the sequencer’s constructor.

`ovm_update_sequence_lib_and_item
`ovm_update_sequence_lib_and_item(ITEM_TYPE_NAME)

This macro does two things:

1. Populates the instance specific sequence library for a sequencer.

2. Registers ITEM_TYPE_NAME as the instance override for the simple sequence’s
item variable.

The macro should be invoked inside the sequencer’s constructor.

Field Macros

The `ovm_field_* macros are invoked inside of the `ovm_*_utils_begin and
`ovm_*_utils_end macro blocks to form "automatic" implementations of the core data
methods: copy, compare, pack, unpack, record, print, and sprint. For example:

class my_trans extends ovm_transaction;

264

 string my_string;

 ‘ovm_object_utils_begin(my_trans)

 ‘ovm_field_string(my_string, OVM_ALL_ON)

 ‘ovm_object_utils_end

endclass

Each `ovm_field_* macro is named to correspond to a particular data type: integrals,
strings, objects, queues, etc., and each has at least two arguments: ARG and FLAG.

ARG is the instance name of the variable, whose type must be compatible with the macro
being invoked. In the example, class variable my_string is of type string, so we use
the `ovm_field_string macro.

If FLAG is set to OVM_ALL_ON, as in the example, the ARG variable will be included in
all data methods. The FLAG, if set to something other than OVM_ALL_ON or
OVM_DEFAULT, specifies which data method implementations will NOT include the given
variable. Thus, if FLAG is specified as NO_COMPARE, the ARG variable will not affect
comparison operations, but it will be included in everything else.

All possible values for FLAG are listed and described below. Multiple flag values can be
bitwise ORed together (in most cases they may be added together as well, but care must be
taken when using the + operator to ensure that the same bit is not added more than once).

Table 1-5 Field Macro Flags

Flag Meaning

OVM_DEFAULT Use the default flag settings.

OVM_ALL_ON Set all operations on (default).

OVM_COPY Do a copy for this field (default).

OVM_NOCOPY Do not copy this field.

OVM_COMPARE Do a compare for this field (default).

OVM_NOCOMPARE Do not compare this field.

OVM_PRINT Print this field (default).

OVM_NOPRINT Do not print this field.

265

`ovm_field_int
`ovm_field_int(ARG, FLAG)

This macro implements the data operations for packed integral types.

`ovm_field_enum
`ovm_field_enum(TYPE, ARG, FLAG)

This macro implements the data operations for enumerated types.

For enums, the TYPE argument is necessary to specify the enumerated type. This is
needed because of SystemVerilog strong typing rules with respect to enumerated types.

`ovm_field_object
`ovm_field_object(ARG, FLAG)

This macro implements the data operations for ovm_object derived objects.

`ovm_field_string
`ovm_field_string(ARG, FLAG)

OVM_NODEFPRINT Do not print the field if it is the same as its default value.

OVM_PACK Pack and unpack this field (default).

OVM_NOPACK Do not pack or unpack this field.

OVM_PHYSICAL Treat as a physical field. Use physical setting in policy
class for this field.

OVM_ABSTRACT Treat as an abstract field. Use the abstract setting in the
policy class for this field.

OVM_READONLY Do not allow setting of this field from the set_*_local
methods.

OVM_BIN, OVM_DEC,
OVM_UNSIGNED, OVM_OCT,
OVM_HEX, OVM_STRING,
OVM_TIME, OVM_NORADIX

Radix settings for integral types. Hex is the default radix if
none is specified.

266

This macro implements the data operations for string types.

`ovm_field_array_int
`ovm_field_array_int(ARG, FLAG)

This macro implements the data operations for dynamic arrays of integral types.

`ovm_field_array_object
`ovm_field_array_object(ARG, FLAG)

This macro implements the data operations for dynamic arrays of ovm_object types.

`ovm_field_array_string
`ovm_field_array_string(ARG, FLAG)

This macro implements the data operations for dynamic arrays of string types.

`ovm_field_queue_int
`ovm_field_queue_int(ARG, FLAG)

This macro implements the data operations for queues of integral types.

`ovm_field_queue_object
`ovm_field_queue_object(ARG, FLAG)

This macro implements the data operations for queues of ovm_object types.

`ovm_field_queue_string
`ovm_field_queue_string(ARG, FLAG)

This macro implements the data operations for queues of string types.

`ovm_field_aa_int_string
`ovm_field_aa_int_string(ARG, FLAG)

This macro implements the data operations for associative arrays of integral types
with string keys.

267

`ovm_field_aa_object_string
`ovm_field_aa_object_string(ARG, FLAG)

This macro implements the data operations for associative arrays of ovm_object types
with string keys.

`ovm_field_aa_string_string
`ovm_field_aa_string_string(ARG, FLAG)

This macro implements the data operations for associative arrays of string types with
string keys.

`ovm_field_aa_int_<key_type>
`ovm_field_aa_int_<key_type>(ARG, FLAG)

These macros implement the data operations for associative arrays of integral types with
integral keys.

The key type can be any of the following: int, integer, int_unsigned,
integer_unsigned, byte, byte_unsigned, shortint, shortint_unsigned,
longint, longint_unsigned.

`ovm_field_aa_string_int
`ovm_field_aa_string_int(ARG, FLAG)

This macro implements the data operations for associative arrays of string types with
int keys.

`ovm_field_aa_object_int
`ovm_field_aa_object_int(ARG, FLAG)

This macro implements the data operations for associative arrays of ovm_object types
with int keys.

Array Printing Macros

The array printing macros can be used inside of the do_print() method of an ovm_object
derived class to add the appropriate code from printing a queue, dynamic array or associative
array.

268

`ovm_print_aa_int_object2
`ovm_print_aa_int_object2(field, printer)

This macro implements array printing for an associative array of ovm_object types with
an int key.

field is the field to print and is also used as the name of the field.

printer is the printer to use.

`ovm_print_aa_int_key4
`ovm_print_aa_int_key4(key_type, field, radix, printer)

This macro implements array printing for an associative array of integral types with an
arbitrary key type.

key_type is the type of the indexing variable for the array.

field is the field to print and is also used as the name of the field.

radix is the radix to use for each element.

printer is the printer to use.

`ovm_print_aa_string_int3
`ovm_print_aa_string_int3(field, radix, printer)

This macro implements array printing for an associative array of integral types with a
string key.

field is the field to print and is also used as the name of the field.

radix is the radix to use for the elements.

printer is the printer to use.

`ovm_print_aa_string_object2
`ovm_print_aa_string_object2(field, printer)

This macro implements array printing for an associative array of ovm_object types with
a string key.

field is the field to print and is also used as the name of the field.

printer is the printer to use.

269

`ovm_print_aa_string_string2
`ovm_print_aa_string_string2(field, printer)

This macro implements array printing for an associative array of string types with a
string key.

field is the field to print and is also used as the name of the field.

printer is the printer to use.

`ovm_print_object_qda3
`ovm_print_object_qda3(field, printer, arraytype)

This macro implements array printing for an ovm_object array type.

field is the field to print and is also used as the name of the field.

printer is the printer to use.

arraytype is the type name to use when printing the array (no quotes are used).

`ovm_print_qda_int4
`ovm_print_qda_int4(field, radix, printer, arraytype)

This macro implements array printing for an integral array type.

field is the field to print and is also used as the name of the field.

radix is the radix to use for the elements.

printer is the printer to use.

arraytype is the type name to use when printing the array (no quotes are used).

`ovm_print_string_qda3
`ovm_print_string_qda3(field, printer, arraytype)

This macro implements array printing for a string array type.

field is the field to print and is also used as the name of the field.

printer is the printer to use.

arraytype is the type name to use when printing the array (no quotes are used).

270

Transactions

ovm_built_in_clone #(T)

This policy class is used to clone built-in types. It is used to build generic components that will
work with either classes or built-in types.

Summary
class ovm_built_in_clone #(type T=int);

static function T clone(input T from);

endclass

File

methodology/ovm_policies.svh

Virtual

No

Parameters
type T = int

The return type of the clone() method.

Members

None

Methods

clone
static function T clone(input T from)

Returns the value of from.

271

ovm_built_in_comp #(T)

This policy class is used to compare built-in types. It is used to build generic components that
work with either classes or built-in types.

Summary
class ovm_built_in_comp #(type T=int);

static function bit comp(input T a, input T b);

endclass

File

methodology/ovm_policies.svh.

Virtual

No

Parameters
type T = int

The type of the items to be compared.

Members

None

Methods

comp
static function bit comp(input T a, input T b)

Returns the value of a==b.

272

ovm_built_in_converter #(T)

This policy class is used to convert built-in types to strings. It is used to build generic
components that will work with either classes or built-in types.

Summary
class ovm_built_in_converter #(type T=int);

static function string convert2string (input T t);

endclass

File

methodology/ovm_policies.svh

Virtual

No

Parameters
type T = int

The type of the item to be converted.

Members

None

Methods

convert2string
static function string convert2string(input T t);

Returns the value of t as a string.

273

ovm_built_in_pair #(T1,T2)

This class represents a pair of built-in types.

Summary
class ovm_built_in_pair #(type T1=int, type T2=T1) extends ovm_transaction;

virtual function string convert2string();

function bit comp (this_type t);

function void copy (input this_type t);

function ovm_transaction clone ();

endclass

File

utils/ovm_pair.svh

Virtual

No

Parameters
type T1 = int

The type of the first element of the pair.

type T2 = T1

The type of the second element of the pair. By default, the two types are the same.

Members
typedef ovm_built_in_pair #(T1, T2) this_type

T1 first

The first element of the pair.

T2 second

The second element of the pair.

274

Methods

Since ovm_built_in_pair is a transaction class, it provides the four compulsory
methods as defined by ovm_object.

convert2string
virtual function string convert2string()

comp
function bit comp(this_type t)

copy
function void copy(input this_type t)

clone
function ovm_transaction clone()

275

ovm_class_clone #(T)

This policy class is used to clone classes. It is used to build generic components that work
with either classes or built-in types.

Summary
class ovm_class_clone #(type T=int);

static function ovm_transaction clone (input T from);

endclass

File

methodology/ovm_policies.svh

Virtual

No

Members

None

Methods

clone
static function ovm_transaction clone(input T from)

This method returns from.clone().

276

ovm_class_comp #(T)

This policy class is used to compare classes. It is used to build generic components that work
with either built-in types or classes.

Summary
class ovm_class_comp #(type T=int);

static function bit comp (input T a, input T b);

endclass

File

methodology/ovm_policies.svh

Virtual

No

Members

None

Methods

comp
static function bit comp (input T a, input T b)

This method returns a.comp(b).

277

ovm_class_converter #(T)

This policy class is used to convert classes to strings. It is used to build generic components
that work with either built-in types or classes.

Summary
class ovm_class_converter #(type T=int);

static function string convert2string (input T t);

endclass

File

base/ovm_policies.svh

Virtual

No

Members

None

Methods

convert2string
static function string convert2string(input T t)

This method returns t.convert2string().

278

ovm_class_pair #(T1,T2)

This class represents a pair of classes.

Summary
class ovm_class_pair #(type T1=int, type T2=T1) extends ovm_transaction;

 typedef ovm_class_pair #(T1, T2) this_type;

function new(input T1 f=null, input T2 s=null);

function string convert2string;

function bit comp(this_type t);

function void copy(input this_type t);

function ovm_transaction clone;

endclass

File

methodology/ovm_pairs.svh

Virtual

No

Members
T1 first

This is the first element in the pair.

T2 second

This is the second element in the pair.

Methods

new
function new(input T1 f=null, input T2 s=null)

A constructor, with optional arguments for first and second. No cloning is performed for
nondefault values.

279

convert2string
function string convert2string

comp
function bit comp(this_type t)

copy
function void copy(input this_type t)

clone
function ovm_transaction clone

Since ovm_built_in_pair is a transaction class, it provides the four compulsory
methods as defined by ovm_object.

280

281

Global Functions and Variables

The following functions and variables are defined in ovm_pkg space. They are globally visible
to all OVM classes and any user code that imports ovm_pkg.

ovm_top
const ovm_root ovm_top = ovm_root::get();

This is the implicit top-level that governs phase execution and provides component
search interface. See ovm_root on page 65 for more information.

factory
const ovm_factory factory = ovm_factory::get();

The singleton instance of ovm_factory on page 97, which is used to create objects and
components based on type and instance overrides.

run_test
task run_test (string test_name="")

Convenience function for ovm_top.run_test(). See ovm_root on page 65 for more
information.

global_stop_request
function void global_stop_request()

Convenience function for ovm_top.stop_request(). See ovm_root on page 65 for
more information.

set_global_timeout
function void set_global_timeout(time timeout)

Convenience function for ovm_top.phase_timeout = timeout. See ovm_root on
page 65 for more information.

set_global_stop_timeout
function void set_global_stop_timeout(time timeout)

Convenience function for ovm_top.stop_timeout = timeout. See ovm_root on
page 65 for more information.

282

ovm_is_match
function bit ovm_is_match (string expr, string str)

Returns 1 if the two strings match, 0 otherwise.

The first string, expr, is a string that may contain '*' and '?' characters. A * matches zero
or more characters, and ? matches any single character.

build_ph

connect_ph

end_of_elaboration_ph

start_of_simulation_ph

run_ph

extract_ph

check_ph

report_ph
`ovm_phase_func_topdown_decl(build)

build_phase #(ovm_component) build_ph = new();

`ovm_phase_task_bottomup_decl(run)

run_phase #(ovm_component) run_ph = new();

...

These objects represent all the predefined OVM phases. Two examples of their
declaration and initialization are given. See ovm_phase on page 59 for more information.

set_config_int

set_config_string

set_config_object
function void set_config_int (string inst_name,

string field_name,

283

ovm_bitstream_t value)

function void set_config_string (string inst_name,

string field_name,

string value)

function void set_config_object (string inst_name,

string field_name,

ovm_object value,

bit clone=1)

These are the global versions of the report, set_config_string, and
set_config_object in ovm_component on page 34. They place the configuration
settings in the global override table, which has highest precedence over any
component-level setting.

ovm_bitstream_t
parameter OVM_STREAMBITS = 4096;

typedef logic signed [OVM_STREAMBITS-1:0] ovm_bitstream_t;

The bitstream type is used as a argument type for passing integral values in such
methods as set_int_local, get_int_local, get_config_int, report, pack and
unpack.

Printing

ovm_default_printer

ovm_default_table_printer

ovm_default_tree_printer

ovm_default_line_printer
ovm_table_printer ovm_default_table_printer = new();

ovm_tree_printer ovm_default_tree_printer = new();

ovm_line_printer ovm_default_line_printer = new();

ovm_printer ovm_default_printer = ovm_default_table_printer;

284

Reporting

ovm_severity / ovm_severity_type
typedef bit [1:0] ovm_severity;

typedef enum ovm_severity

{

 OVM_INFO,

 OVM_WARNING,

 OVM_ERROR,

 OVM_FATAL

} ovm_severity_type;

Defines all possible values for report severity.

ovm_action / ovm_action_type
typedef bit [5:0] ovm_action;

typedef enum ovm_action

{

 OVM_NO_ACTION = 6'b000000,

 OVM_DISPLAY = 6'b000001, // send report to standard output

 OVM_LOG = 6'b000010, // send report to one or more file(s)

 OVM_COUNT = 6'b000100, // increment report counter

 OVM_EXIT = 6'b001000, // terminate simulation immediately

 OVM_CALL_HOOK = 6'b010000, // call report_hook methods

 OVM_STOP = 6'b100000 // issue a stop_request, ending current phase

} ovm_action_type;

Defines all possible values for report actions. Each report is configured to execute one
or more actions, determined by the bitwise OR of any or all of the following enumeration
constants.

ovm_verbosity

Verbosity values are just integers. This enum provides some predefined verbosity levels.

typedef enum {

 OVM_NONE = 0,

 OVM_LOW = 10000,

 OVM_MEDIUM = 20000,

 OVM_HIGH = 30000,

 OVM_FULL = 40000

285

} ovm_verbosity;

OVM_FILE
typedef int OVM_FILE;

_global_reporter
ovm_reporter _global_reporter

The _global_reporter is an instance of ovm_report_object that can be used by
non-component-based code, including modules and interfaces.

ovm_report_fatal

ovm_report_error

ovm_report_warning

ovm_report_info
function void ovm_report_fatal (string id, string message,

int verbosity=0,

string filename="", int line=0)

function void ovm_report_error (string id, string message,

int verbosity=100,

string filename="", int line=0)

function void ovm_report_warning(string id, string message,

int verbosity=200,

string filenamee="", int line=0)

function void ovm_report_info (string id, string message,

int verbosity=300,

string filename="", int line=0)

These methods, defined in package scope, are convenience functions that delegate to
the corresponding methods in _global_reporter. See ovm_report_object on
page 70 for details on their behavior.

286

287

Index

A
Array Printing Macros

ovm_print_aa_int_object2 268
print_aa_int_key4 268
print_aa_string_int3 268
print_aa_string_object2 268
print_aa_string_string2 269
print_object_qda3 269
print_qda_int4 269
print_string_qda3 269

B
Base

ovm_object 13
ovm_transaction 27
ovm_void 12

Bi-Directional Interfaces
bi-if

blocking_master 161
blocking_slave 161
blocking_transport 161
master 161
nonblocking_master 161
nonblocking_slave 161
nonblocking_transport 161
slave 161
transport 161

ovm_bi-if_export 161
ovm_bi-if_imp 161
ovm_bi-if_port 161

Built-In TLM Channels 180
tlm_analysis_fifo 184
tlm_fifo 181
tlm_req_rsp_channel 186
tlm_transport_channel 178, 190

C
Classes for Connectors 158
Comparators 246

ovm_algorithmic_comparator 252
ovm_in_order_built_in_comparator 250
ovm_in_order_class_comparator 251
ovm_in_order_comparator 247

Component Hierarchy 34
ovm_component 34
ovm_phase 59
ovm_root 65

Components 192
ovm_agent 197
ovm_driver 202
ovm_env 195
ovm_monitor 198
ovm_push_driver 202
ovm_push_sequencer 217
ovm_random_stimulus 221
ovm_scoreboard 199
ovm_sequencer 215
ovm_sequencer_base 204
ovm_sequencer_param_base 211
ovm_subscriber 219
ovm_test 193
Predefined Components and Specialized

Component Base Classes 192

F
Factory 88

ovm_component_registry #(typeT, string
Tname) 90

ovm_factory 97
ovm_object_registry #(typeT, string

Tname) 94
ovm_object_wrapper 88

Fields Macros

288

ovm_field_aa_int_key_type 267
ovm_field_aa_int_string 266
ovm_field_aa_object_int 267
ovm_field_aa_object_string 267
ovm_field_aa_string_int 267
ovm_field_aa_string_string 267
ovm_field_array_int 266
ovm_field_array_object 266
ovm_field_array_string 266
ovm_field_enum 265
ovm_field_int 265
ovm_field_object 265
ovm_field_queue_int 266
ovm_field_queue_object 266
ovm_field_queue_string 266
ovm_field_string 265

G
Global Functions and Variables 281

build_ph 282
check_ph 282
connect_ph 282
end_of_elaboration_ph 282
extract_ph 282
factory 281
global_stop_request 281
ovm_bitstream_t 283
ovm_is_match 282
ovm_top 281
report_ph 282
run_ph 282
run_test 281
set_config_int 282
set_config_object 282
set_config_string 282
set_global_stop_timeout 281
set_global_timeout 281
start_of_simulation_ph 282

M
Macros 255

Array Printing Macros 267
Fields Macros 263
Sequence Action Macros 259
Sequence Macros 258
Sequencer Macros 262
Utility Macros 255

P
Policies 125

ovm_comparer 125
ovm_default_line_printer 141
ovm_default_printer 142
ovm_default_table_printer 142
ovm_default_tree_printer 141
ovm_packer 130
ovm_printer 139
ovm_recorder 136

Policy Knobs 147
ovm_hier_printer_knobs 151
ovm_printer_knobs 147
ovm_table_printer_knobs 148, 151
ovm_tree_printer_knobs 152
Printer Examples 152

Ports and Exports 162
ovm_bi-if_export 170
ovm_bi-if_imp 172
ovm_bi-if_port 168
ovm_port_base 162
ovm_seq_item_pull_port_type 178
ovm_uni-if_export 169
ovm_uni-if_imp 171
ovm_uni-if_port 167
sqr_if_base 174

Printing 283
ovm_default_line_printer 283
ovm_default_printer 283
ovm_default_table_printer 283
ovm_default_tree_printer 283

R
Reporting 69, 284

289

_global_reporter 285
ovm_action // ovm_action_type 284
OVM_FILE 285
ovm_report_error 285
ovm_report_fatal 285
ovm_report_handler 79
ovm_report_info 285
ovm_report_object 70
ovm_report_server 84
ovm_report_warning 285
ovm_reporter 78
ovm_severity // ovm_severity_type 284
ovm_verbosity 284

S
Sequence Action Macros

ovm_create 260
ovm_create_on 261
ovm_do 259
ovm_do_on 261
ovm_do_on_pri 262
ovm_do_on_pri_with 262
ovm_do_pri 260
ovm_do_pri_with 260
ovm_do_with 260
ovm_rand_send 261
ovm_rand_send_pri 261
ovm_rand_send_pri_with 261
ovm_rand_send_with 261
ovm_send 260
ovm_send_pri 260

Sequence Macros
ovm_register_sequence 258
ovm_sequence_param_utils 259
ovm_sequence_param_utils_begin 259
ovm_sequence_utils 259
ovm_sequence_utils_begin 259
ovm_sequence_utils_end 259

Sequencer Macros
ovm_sequencer_param_utils 262
ovm_sequencer_param_utils_begin 262
ovm_sequencer_utils 262

ovm_sequencer_utils_begin 262
ovm_sequencer_utils_end 262
ovm_update_sequence_lib 263
ovm_update_sequence_lib_and_item 263

Sequences 223
ovm_exhaustive_sequence 242
ovm_random_sequence 240
ovm_sequence 236
ovm_sequence_base 227
ovm_sequence_item 223
ovm_simple_sequence 244

Synchronization 109
ovm_barrier 119
ovm_barrier_pool 122
ovm_event 109
ovm_event_callback 117
ovm_event_pool 114

T
TLM Interface Methods Map 159
TLM Interfaces 154

Bi-Directional Interfaces 161
Classes for TLM Communication 154
Port and Export Connectors 158
TLM Interface Methods Map 159
tlm_if_base 155
Uni-Directional Interfaces 160

Transactions 270
ovm_built_in_clone 270, 271, 272, 273,

275, 276, 277, 278
ovm_built_in_comp 271
ovm_built_in_converter 272
ovm_built_in_pair 273
ovm_class_clone 275
ovm_class_comp 276
ovm_class_converter 277
ovm_class_pair 278

U
Uni-Directional Interfaces 160

ovm_uni-if_export 160

290

ovm_uni-if_imp 160
ovm_uni-if_port 160
uni-if

analysis 160
blocking_get 160
blocking_get_peek 160
blocking_peek 160
blocking_put 160
get 160
get_peek 160
nonblocking_get 160
nonblocking_get_peek 160
nonblocking_peek 160
nonblocking_put 160
peek 160
put 160

Utility Macros
ovm_component_param_utils 257
ovm_component_param_utils_begin 257
ovm_component_utils 257
ovm_component_utils_begin 256, 257
ovm_component_utils_end 257
ovm_field_utils_begin 258
ovm_field_utils_end 258
ovm_object_param_utils 256
ovm_object_utils 256
ovm_object_utils_begin 256
ovm_object_utils_end 256

	OVM Class Reference
	Contents
	OVM Class Definitions
	Class Index

	Base
	ovm_void
	Summary
	File
	Virtual
	Members
	Methods

	ovm_object
	Summary
	File
	Virtual
	Members
	Methods
	new
	clone
	compare
	copy
	create
	do_compare
	do_copy
	do_pack
	do_print
	do_record
	do_unpack
	get_name
	get_full_name
	get_inst_count
	get_inst_id
	get_type
	get_type_name
	pack
	print
	record
	reseed
	set_int_local
	set_string_local
	set_object_local
	set_name
	sprint
	unpack
	unpack_bytes
	unpack_ints

	ovm_transaction
	Summary
	File
	Virtual
	Members
	Methods
	new
	accept_tr
	begin_child_tr
	begin_tr
	disable_recording
	do_accept_tr
	do_begin_tr
	do_end_tr
	convert2string
	enable_recording
	end_tr
	get_accept_time
	get_begin_time
	get_end_time
	get_event_pool
	get_initiator
	get_tr_handle
	get_transaction_id
	is_active
	is_recording_enabled
	set_initiator
	set_transaction_id

	Component Hierarchy
	ovm_component
	Summary
	File
	Virtual
	Methods
	new
	accept_tr
	apply_config_settings
	begin_tr
	begin_child_tr
	build
	check
	connect
	create_component
	create_object
	do_accept_tr
	do_begin_tr
	do_end_tr
	do_kill_all
	end_tr
	end_of_elaboration
	extract
	get_config_int
	get_first_child
	get_full_name
	get_num_children
	get_parent
	get_type_name
	has_child
	kill
	lookup
	print_config_settings
	print_override_info
	record_error_tr
	record_event_tr
	report
	resume
	run
	See ovm_phase on page 59 for more information on phases.set_config_int
	set_inst_override
	set_inst_override_by_type
	set_name
	set_report_default_file_hier
	set_report_severity_action_hier
	set_report_verbosity_level_hier
	set_type_override
	set_type_override_by_type
	start_of_simulation
	status
	stop
	suspend

	Members
	enable_stop_interrupt
	print_config_matches
	print_enabled

	ovm_phase
	Summary
	File
	Virtual
	Methods
	new
	call_task
	call_func
	get_name
	get_type_name
	is_done
	is_in_progress
	is_task
	is_top_down
	reset

	Usage
	Inheriting from the ovm_phase Class
	Optional Macros
	`ovm_phase_func_topdown_decl

	ovm_root
	Summary
	File
	Virtual
	Methods
	new
	get_type_name
	get_current_phase
	run_test
	insert_phase
	stop_request
	find
	find_all

	Members
	enable_print_topology
	finish_on_completion
	phase_timeout

	Reporting
	ovm_report_object
	Summary
	File
	Virtual
	Methods
	new
	ovm_report_fatal
	die
	dump_report_state
	get_report_handler
	get_report_server
	report_header
	report_hook
	report_summarize
	reset_report_handler
	set_report_handler
	set_report_max_quit_count
	set_report_default_file
	set_report_severity_action
	set_report_verbosity_level

	ovm_reporter
	Summary
	File
	Virtual
	Methods
	new

	ovm_report_handler
	Summary
	File
	Virtual
	Default Actions
	Default File Handle
	Methods
	new
	format_action
	initialize
	get_action
	get_file_handle
	get_verbosity_level
	report
	report_header
	run_hooks
	summarize
	set_max_quit_count
	set_verbosity_level
	set_default_file

	ovm_report_server
	Summary
	File
	Virtual
	Methods
	new
	get_server
	get_max_quit_count
	get_quit_count
	get_severity_count
	get_id_count
	summarize
	f_ovm_display
	dump_server_state
	process_report
	compose_message

	Factory
	ovm_object_wrapper
	Summary
	File
	Virtual
	Methods
	create_component
	create_object
	get_type_name

	ovm_component_registry #(T,Tname)
	Summary
	File
	Methods
	create_component
	get_type_name
	get
	create
	set_type_override
	set_inst_override

	Usage

	ovm_object_registry #(T,Tname)
	Summary
	File
	Methods
	create_object
	get_type_name
	get
	create
	set_type_override
	set_inst_override

	Usage

	ovm_factory
	Summary
	File
	Methods
	register
	create_component_by_type
	print
	debug_create_by_type
	find_override_by_name
	set_inst_override_by_type
	set_type_override_by_name

	Usage

	Synchronization
	ovm_event
	Summary
	File
	Virtual
	Members
	Methods
	new
	add_callback
	cancel
	delete_callback
	get_num_waiters
	get_trigger_data
	get_trigger_time
	is_on
	is_off
	reset
	trigger
	wait_on
	wait_off
	wait_ptrigger
	wait_ptrigger_data
	wait_trigger
	wait_trigger_data

	ovm_event_pool
	Summary
	File
	Virtual
	Members
	Methods
	new
	delete
	exists
	first
	get
	get_global_pool
	last
	num
	next
	prev

	ovm_event_callback
	Summary
	File
	Virtual
	Members
	Methods
	new
	pre_trigger
	post_trigger

	ovm_barrier
	Summary
	File
	Virtual
	Members
	Methods
	new
	cancel
	get_num_waiters
	get_threshold
	reset
	set_auto_reset
	set_threshold
	wait_for

	ovm_barrier_pool
	Summary
	File
	Virtual
	Members
	Methods
	new
	delete
	exists
	first
	get
	get_global_pool
	last
	num
	next
	prev

	Policies
	ovm_comparer
	Summary
	File
	Virtual
	Members
	Methods
	compare_field
	compare_field_int
	compare_object
	compare_string
	print_msg

	ovm_packer
	Summary
	File
	Virtual
	Members
	Methods
	get_packed_size
	is_null
	pack_field
	pack_field_int
	pack_string
	pack_object
	pack_real
	pack_time
	unpack_field
	unpack_field_int
	unpack_string
	unpack_object
	unpack_real
	unpack_time

	ovm_recorder
	Summary
	File
	Virtual
	Members
	Methods
	new
	record_field
	record_string
	record_object
	record_time

	ovm_printer
	Summary
	File
	Virtual
	Members
	Global Variables
	ovm_default_line_printer
	ovm_default_tree_printer
	ovm_default_table_printer
	ovm_default_printer

	Methods
	print_array_header
	print_array_footer
	print_array_range
	print_field
	print_generic
	print_footer
	print_header
	print_id
	print_newline
	print_object
	print_object_header
	print_size
	print_string
	print_time
	print_type_name
	print_value
	print_value_array
	print_value_object
	print_value_string

	Policy Knobs
	ovm_printer_knobs
	Summary
	File
	Virtual
	Members
	ovm_printer_knobs
	ovm_hier_printer_knobs
	ovm_table_printer_knobs
	ovm_tree_printer_knobs
	Methods
	get_radix_str

	Printer Examples

	TLM Interfaces
	tlm_if_base #(T1,T2)
	Summary
	Virtual
	Members
	Methods
	put
	get
	peek
	try_put
	can_put
	try_get
	can_get
	try_peek
	can_peek
	transport
	nb_transport
	write

	Port and Export Connectors
	Uni-Directional Interfaces
	Bi-Directional Interfaces

	Ports and Exports
	ovm_port_base #(IF)
	Summary
	File
	Virtual
	Parameters
	Methods
	new
	connect
	debug_connected_to
	get_name
	get_parent
	get_comp
	get_type_name
	is_port
	is_unbounded
	max_size
	set_default_index
	size
	resolve_bindings
	get_if

	ovm_uni-if_port #(T)
	Summary
	File
	Parameters
	Methods
	new

	ovm_bi-if_port #(REQ,RSP)
	Summary
	File
	Parameters
	Methods
	new

	ovm_uni-if_export #(T)
	Summary
	File
	Parameters
	Methods
	new

	ovm_bi-if_export #(REQ,RSP)
	Summary
	File
	Parameters
	Methods
	new

	ovm_uni-if_imp #(T,IMP)
	Summary
	File
	Parameters
	Methods
	new

	ovm_bi-if_imp #(REQ,RSP,IMP)
	Summary
	File
	Parameters
	Methods
	new

	sqr_if_base #(REQ,RSP)
	Summary
	File
	Parameters
	Methods
	get
	get_next_item
	has_do_available
	item_done
	peek
	put
	try_next_item
	wait_for_sequences

	ovm_seq_item_pull_port_type #(REQ,RSP)
	Summary
	File
	Parameters
	Methods
	new

	Built-In TLM Channels
	tlm_fifo #(T)
	Summary
	File
	Virtual
	Parameters
	Members
	put_export
	get_peek_export
	put_ap
	get_ap

	Methods
	new
	flush
	size

	tlm_analysis_fifo #(T)
	Summary
	File
	Virtual
	Parameters
	Members
	analysis_export

	Methods
	new

	tlm_req_rsp_channel #(REQ,RSP)
	Summary
	File
	Virtual
	Parameters
	Members
	put_request_export
	get_peek_response_export
	get_peek_request_export
	put_response_export
	master_export
	slave_export
	request_ap
	response_ap

	Methods
	new

	tlm_transport_channel #(REQ,RSP)
	Summary
	File
	Parameters
	Members
	transport_export

	Methods
	new

	Components
	ovm_test
	Summary
	File
	Virtual
	Members
	Methods
	new

	Usage

	ovm_env
	Summary
	File
	Virtual
	Methods
	new
	get_type_name

	ovm_agent
	Summary
	File
	Methods
	new

	ovm_monitor
	Summary
	File
	Virtual
	Methods
	new

	ovm_scoreboard
	Summary
	File
	Virtual
	Methods
	new

	ovm_driver #(REQ,RSP)
	Summary
	File
	Virtual
	Members
	seq_item_port
	rsp_port

	Methods
	new

	Usage
	Sequencer to Driver port connections

	ovm_push_driver #(REQ,RSP)
	Summary
	File
	Virtual
	Members
	req_export
	rsp_port

	Methods
	new

	Usage
	Sequencer to Driver port connections

	ovm_sequencer_base
	Summary
	Members
	default_sequence

	Methods
	add_sequence
	remove_sequence
	add_typewide_sequence
	remove_typewide_sequence
	current_grabber
	is_blocked
	is_child
	is_grabbed
	is_locked
	has_do_available
	lock
	grab
	ungrab
	unlock
	get_seq_kind
	get_sequence
	num_sequences
	send_request
	set_arbitration
	stop_sequences
	user_priority_arbitration
	wait_for_grant
	wait_for_item_done

	ovm_sequencer_param_base #(REQ,RSP)
	rsp_export
	Methods
	new
	send_request
	get_current_item
	last_req
	set_num_last_reqs
	get_num_last_reqs
	get_num_reqs_sent
	last_rsp
	set_num_last_rsps
	get_num_last_rsps
	get_num_rsps_received
	execute_item
	start_default_sequence

	ovm_sequencer #(REQ,RSP)
	Summary
	Members
	seq_item_export
	pound_zero_count

	Methods
	new
	send_request

	ovm_push_sequencer #(REQ,RSP)
	Summary
	Members
	req_port

	Methods
	new
	run

	ovm_subscriber #(T)
	Summary
	File
	Parameters
	Members
	analysis_export

	Methods
	new
	write

	ovm_random_stimulus #(T)
	Summary
	File
	Parameters
	Members
	blocking_put_port

	Methods
	new
	generate_stimulus
	stop_stimulus_generation

	Sequences
	ovm_sequence_item
	Summary
	File
	Virtual
	Methods
	new
	set_sequence_id
	get_sequence_id
	set_use_sequence_info
	get_use_sequence_info
	set_id_info
	set_sequencer
	set_parent_sequence
	get_parent_sequence
	get_depth
	set_depth
	is_item
	get_root_sequence_name
	get_root_sequence
	get_sequence_path

	ovm_sequence_base
	Summary
	File
	Virtual
	Members
	seq_kind

	Methods
	new
	start
	get_sequence_state
	wait_for_sequence_state
	kill
	pre_body
	post_body
	pre_do
	body
	mid_do
	post_do
	is_item
	num_sequences
	get_seq_kind
	get_sequence
	do_sequence_kind
	set_priority
	get_priority
	wait_for_relevant
	is_relevant
	is_blocked
	lock
	grab
	unlock
	ungrab
	wait_for_grant
	wait_for_item_done
	send_request
	set_sequencer
	get_sequencer
	use_response_handler
	get_use_response_handler
	response_handler

	ovm_sequence #(REQ,RSP)
	Summary
	File
	Virtual
	Members
	req
	rsp

	Methods
	new
	send_request
	get_response
	set_sequencer
	set_response_queue_error_report_disabled
	get_response_queue_error_report_disabled
	set_response_queue_depth
	get_current_item

	ovm_random_sequence
	Summary
	File
	Virtual
	Members
	Methods

	ovm_exhaustive_sequence
	Summary
	File
	Virtual
	Members
	Methods

	ovm_simple_sequence
	Summary
	File
	Virtual
	Members
	Methods

	Comparators
	ovm_in_order_comparator #(T,comp,convert,pair_type)
	Summary
	File
	Parameters
	Members
	before_export
	after_export
	pair_ap

	Methods
	new
	flush
	run

	ovm_in_order_built_in_comparator #(T)
	Summary
	File
	Parameters
	Methods
	new

	ovm_in_order_class_comparator #(T)
	Summary
	File
	Parameters
	Methods
	new

	ovm_algorithmic_comparator #(BEFORE,AFTER,TRANSFORMER)
	Summary
	File
	Virtual
	Parameters
	Members
	after_export
	before_export

	Methods
	new
	write

	OVM Macros
	Utility Macros
	`ovm_object_utils
	`ovm_component_utils
	`ovm_field_utils_begin

	Sequence Macros
	`ovm_register_sequence
	`ovm_sequence_utils

	Sequence Action Macros
	`ovm_do
	`ovm_do_pri
	`ovm_do_with
	`ovm_do_pri_with
	`ovm_create
	`ovm_send
	`ovm_send_pri
	`ovm_rand_send
	`ovm_rand_send_pri
	`ovm_rand_send_with
	`ovm_rand_send_pri_with
	`ovm_create_on
	`ovm_do_on
	`ovm_do_on_pri
	`ovm_do_on_pri_with

	Sequencer Macros
	`ovm_sequencer_utils
	`ovm_update_sequence_lib
	`ovm_update_sequence_lib_and_item

	Field Macros
	`ovm_field_int
	`ovm_field_enum
	`ovm_field_object
	`ovm_field_string
	`ovm_field_array_int
	`ovm_field_array_object
	`ovm_field_array_string
	`ovm_field_queue_int
	`ovm_field_queue_object
	`ovm_field_queue_string
	`ovm_field_aa_int_string
	`ovm_field_aa_object_string
	`ovm_field_aa_string_string
	`ovm_field_aa_int_<key_type>
	`ovm_field_aa_string_int
	`ovm_field_aa_object_int

	Array Printing Macros
	`ovm_print_aa_int_object2
	`ovm_print_aa_int_key4
	`ovm_print_aa_string_int3
	`ovm_print_aa_string_object2
	`ovm_print_aa_string_string2
	`ovm_print_object_qda3
	`ovm_print_qda_int4
	`ovm_print_string_qda3

	Transactions
	ovm_built_in_clone #(T)
	Summary
	File
	Virtual
	Parameters
	Members
	Methods
	clone

	ovm_built_in_comp #(T)
	Summary
	File
	Virtual
	Parameters
	Members
	Methods
	comp

	ovm_built_in_converter #(T)
	Summary
	File
	Virtual
	Parameters
	Members
	Methods
	convert2string

	ovm_built_in_pair #(T1,T2)
	Summary
	File
	Virtual
	Parameters
	Members
	Methods
	convert2string
	comp
	copy
	clone

	ovm_class_clone #(T)
	Summary
	File
	Virtual
	Members
	Methods
	clone

	ovm_class_comp #(T)
	Summary
	File
	Virtual
	Members
	Methods
	comp

	ovm_class_converter #(T)
	Summary
	File
	Virtual
	Members
	Methods
	convert2string

	ovm_class_pair #(T1,T2)
	Summary
	File
	Virtual
	Members
	Methods
	new
	convert2string
	comp
	copy
	clone

	Global Functions and Variables
	ovm_top
	factory
	run_test
	global_stop_request
	set_global_timeout
	set_global_stop_timeout
	ovm_is_match
	build_ph
	set_config_int
	set_config_string
	set_config_object
	ovm_bitstream_t
	Printing
	ovm_default_printer

	Reporting
	ovm_severity / ovm_severity_type
	ovm_action / ovm_action_type
	ovm_verbosity
	OVM_FILE
	_global_reporter
	ovm_report_fatal

	Index
	A
	B
	C
	F
	G
	M
	P
	R
	S
	T
	U

